Vol. 63
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-07-07
Electric Quadrupolarizability of a Source-Driven Dielectric Sphere
By
Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015
Abstract
Since both metamaterials comprised of artificial molecules (inclusions in a host material) and natural molecular materials at optical and greater frequencies can exhibit significant electric quadrupolarization as well as electric and magnetic dipolarization, we determine the passive, causal electric quadrupolarizability for a spherically symmetric molecule, namely a dielectric sphere subject to source-driven applied fields. For source-driven excitations, it is found that two electric quadrupolarizability constants are generally required to characterize the electric quadrupolar response of the sphere, with one of the constants multiplying the divergence of the applied electric field. For source-free fields, such as the fields of the eigenmodes of an electric quadrupolar array, the local electric field illuminating each inclusion is solenoidal. The constitutive relation is characterized by just one quadrupolarizability constant, and the electric quadrupolarization becomes traceless. It is also found that the electric quadrupolarization becomes very large and effectively traceless near the resonant frequencies of electrically small plasmonic spheres with negative permittivity and for somewhat larger spheres with positive permittivity.
Citation
Arthur D. Yaghjian, Mario Silveirinha, Amirnader Askarpour, and Andrea Alu, "Electric Quadrupolarizability of a Source-Driven Dielectric Sphere," Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015.
doi:10.2528/PIERB15052701
References

1. Papas, C. H., Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York, 1965; and Dover, New York , 1988.

2. Yaghjian, A. D., A. Alu, and M. G. Silveirinha, "Anisotropic representation for spatially dispersive periodic metamaterial arrays," Transformation Electromagnetics and Metamaterials, Chapter 13, Springer, 2014, also ``Homogenization of spatially dispersive metamaterial arrays in terms of generalized electric and magnetic polarizations,'' Photonics and Nanostructures --- Fundamentals and Applications, 374–396, Nov. 2013.

3. Yaghjian, A. D., "Boundary conditions for electric quadrupolar continua," Radio Science, Vol. 49, 1289-1299, Dec. 2014.
doi:10.1002/2014RS005530

4. Scott, W. T., The Physics of Electricity and Magnetism, Robert E. Krieger, Huntington, NY, 1977.

5. Raab, R. E. and O. L. de Lange, Multipole Theory in Electromagnetism, Clarendon Press, Oxford NY, 2005.

6. Cho, D. J., F. Wang, X. Zhang, and . R. Shen, "Contribution of the electric quadrupole resonance in optical metamaterials," Phys. Rev. B, Vol. 78, 121101-1-121101-4, 2008.

7. Silveirinha, M. G., "Boundary conditions for electric quadrupolar metamaterials," New Journal of Physics, Vol. 16, 083042-1-083042-30, 2014.

8. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

9. Agranovich, V. M. and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons, Wiley-Interscience, New York, 1966; also see 2nd Edition, Springer, New York, 1984.
doi:10.1007/978-3-662-02406-5

10. Silveirinha, M. G., "Nonlocal homogenization theory of structured materials," Metamaterials Handbook: Theory and Phenomena of Metamaterials, Chapter 13, F. Capolino (ed.), CRC Press, Boca Raton, 2009.

11. Chebykin, A. V., A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, "Nonlocal effective medium model for multilayered metal-dielectric metamaterials," Phys. Rev. B, Vol. 84, 115438-1-115438-9, 2011.
doi:10.1103/PhysRevB.84.115438

12. Van Bladel, J. G., Electromagnetic Fields, 2nd Edition, IEEE/Wiley, Piscataway, NJ, 2007.
doi:10.1002/047012458X

13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley, New York, 1983.

14. Alu, A. and N. Engheta, "Guided propagation along quadrupolar chains of plasmonic nanoparticles ," Phys. Rev. B, Vol. 79, 235412-1-235412-12, 2009.
doi:10.1103/PhysRevB.79.235412

15. Naik, G. V., V. M. Shalaev, and A. Boltasseva, "Alternative plasmonic materials: beyond gold and silver," Adv. Mater., Vol. 25, 3264-3294, 2013.
doi:10.1002/adma.201205076

16. Alu, A. and N. Engheta, "Enhanced directivity from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials," IEEE Trans. Antennas Propagat., Vol. 55, 3027-3029, Nov. 2007.
doi:10.1109/TAP.2007.908368

17. Oldenburg, S. J., G. D. Hale, J. B. Jackson, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Applied Phys. Letts., Vol. 75, 1063-1065, Aug. 1999.
doi:10.1063/1.124597

18. Alu, A., A. D. Yaghjian, R. A. Shore, and M. G. Silveirinha, "Causality relations in the homogenization of metamaterials," Phys. Rev. B, Vol. 84, 054305-1-054305-16, Aug. 2011.

19. Hansen, T. B. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields, IEEE/Wiley, New York, 1999.
doi:10.1109/9780470545522

20. Lu, J. K., Boundary Value Problems for Analytic Functions, World Scientific, New York, 1993.