1. Hagness, S. and A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Second Edition), 2 Ed., Artech House, 2000.
2. Taflove, A. and M. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 8, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640
3. Sun, G. and C. Trueman, "Some fundamental characteristics of the one-dimensional alternate-direction-implicit finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 46-52, 2004.
doi:10.1109/TMTT.2003.821230
4. Lee, J., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 430-442, 1997.
doi:10.1109/8.558658
5. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
6. Gedney, S. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 10, 332-334, 1995.
doi:10.1109/75.465046
7. Cangellaris, A., C. Lin, and K. Mei, "Point-matched time domain finite element methods for electromagnetic radiation and scattering," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 10, 1160-1173, 1987.
doi:10.1109/TAP.1987.1143981
8. Hesthaven, T. W. J. S., "High-order/spectral methods on unstructured grids i. Time-domain solution of Maxwell's equations,", Tech. Rep. 2001-6, ICASE NASA Langley Research Center, Hampton, Virginia, March 2001.
9. Songoro, H., M. Vogel, and Z. Cendes, "Keeping time with Maxwell's equations," IEEE Microwave Magazine, Vol. 11, No. 2, 42-49, 2010.
doi:10.1109/MMM.2010.935779
10. Raiyan Kabir, S. M., B. M. A. Rahman, A. Agrawal, and K. T. V. Grattan, "Elimination of numerical dispersion from electromagnetic time domain analysis by using resource efficient finite element technique," Progress In Electromagnetics Research, Vol. 137, 487-512, 2013.
doi:10.2528/PIER13012305
11. Courant, R., K. Friedrichs, and H. Lewy, "Über die partiellen differenzengleichungen der 568 mathematischen physik," Mathematische Annalen, Vol. 100, No. 1, 32-74, 1928.
doi:10.1007/BF01448839
12. Cangellaris, A., "Time-domain finite methods for electromagnetic wave propagation and scattering," IEEE Transactions on Magnetics, Vol. 27, No. 5, 3780-3785, 1991.
doi:10.1109/20.104926
13. Leung, D., N. Kejalakshmy, B. M. A. Rahman, and K. Grattan, "Rigorous modal analysis of silicon strip nanoscale waveguides," Optics Express, Vol. 18, No. 8, 8528-8539, 2010.
doi:10.1364/OE.18.008528
14. Kirby, E., J. Hamm, K. Tsakmakidis, and O. Hess, "FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114027, 2009.
doi:10.1088/1464-4258/11/11/114027
15. Rahman, B. M. A. and J. B. Davies, "Finite-element solution of integrated optical waveguides," Journal of Lightwave Technology, Vol. 2, No. 5, 682-688, 1984.
doi:10.1109/JLT.1984.1073669
16. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606
17. Themistos, C. and B. M. A. Rahman, "Design issues of a multimode interference-based 3-dB splitter," Applied Optics, Vol. 41, No. 33, 7037-7044, 2002.
doi:10.1364/AO.41.007037
18. Juntunen, J. and T. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 582-588, 2000.
doi:10.1109/22.842030
19. Intel Corporation Intel® 64 and IA-32 Architectures Optimization Reference Manual, 2014.
20. Jamieson, L. H., P. T. Mueller, and H. J. Siegel, "FFT algorithms for simd parallel processing systems," Journal of Parallel and Distributed Computing, Vol. 3, No. 1, 48-71, 1986.
doi:10.1016/0743-7315(86)90027-4
21. Agaian, S. and D. Gevorkian, "Synthesis of a class of orthogonal transforms. Parallel simd-algorithms and specialized processors," Pattern Recognition and Image Analysis, Vol. 2, No. 4, 394-408, 1992.
22. Ben-Asher, Y., D. Egozi, and A. Schuster, "2-D simd algorithms for perfect shuffle networks," Journal of Parallel and Distributed Computing, Vol. 16, No. 3, 250-257, 1992.
doi:10.1016/0743-7315(92)90036-M
23. Apostolakis, J., P. Coddington, and E. Marinari, "New simd algorithms for cluster labeling on parallel computers," International Journal of Modern Physics C, Vol. 4, No. 4, 749-763, 1993.
doi:10.1142/S0129183193000628
24. Chen, H., N. S. Flann, and D. W. Watson, "Parallel genetic simulated annealing: A massively parallel simd algorithm," IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 2, 126-136, 1998.
doi:10.1109/71.663870
25. Hong, I., S. Chung, H. Kim, Y. Kim, Y. Son, and Z. Cho, "Ultra fast symmetry and simd-based projection-backprojection (ssp) algorithm for 3-D pet image reconstruction," IEEE Transactions on Medical Imaging, Vol. 26, No. 6, 789-803, 2007.
doi:10.1109/TMI.2007.892644
26. Goualard, F., "Fast and correct simd algorithms for interval arithmetic," PARA'08, Springer, 2010.
27. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159
28. Berenger, J., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, 110-117, 1996.
doi:10.1109/8.477535