1. Zhang, C., S. Yang, H. K. Pan, A. E. Fathy, and V. K. Nair, "Frequency reconfigurable antennas for multi radio wireless platforms," IEEE Microwave Magazine, Vol. 10, No. 1, 66-83, Feb. 2009.
doi:10.1109/MMM.2008.930677 Google Scholar
2. FCC (Federal Communications Commission), , First Report and Order, Feb. 14, 2002.
3. Li, R. L., T. Wu, S. Y. Eom, S. S. Myoung, K. Lim, J. Laskar, S. I. Jeon, and M. M. Tentzeris, "Switchable quad-band antennas for cognitive radio base station applications," IEEE Trans. Antennas Propagation, Vol. 58, No. 5, 1468-1476, May 2010.
doi:10.1109/TAP.2010.2044472 Google Scholar
4. Mahmoud, S. F. and A. F. Sheta, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propagation Letter, Vol. 7, 40-42, 2008. Google Scholar
5. Huang, C. T. and T. Y. Han, "Reconfigurable monopolar patch antenna," Electron Lett., Vol. 46, No. 3, 199-200, Feb. 2010.
doi:10.1049/el.2010.3242 Google Scholar
6. Gardner, P., M. R. Hamid, P. S. Hall, and F. Ghanem, "Switched-band Vivaldi antenna," IEEE Trans. Antennas Propagation, Vol. 59, No. 5, 1472-1480, May 2011.
doi:10.1109/TAP.2011.2122293 Google Scholar
7. Li, R. L., G. P. Jin, and D. L. Zhang, "Optically controlled reconfigurable antenna for cognitive radio applications," Electron Lett., Vol. 47, No. 17, 948-950, Aug. 2011.
doi:10.1049/el.2011.1958 Google Scholar
8. Gardner, P., M. R. Hamid, P. S. Hall, and F. Ghanem, "Vivaldi antenna with integrated switchable band pass resonator," IEEE Trans. Antennas Propagation, Vol. 59, No. 11, 4008-4015, Nov. 2011. Google Scholar
9. Ghafouri-Shiraz, H. and A. Tariq, "Frequency-reconfigurable monopole antennas," IEEE Trans. Antennas Propagation, Vol. 60, No. 1, 44-50, Jan. 2012.
doi:10.1109/TAP.2011.2167929 Google Scholar
10. Gardner, P., J. R. Kelly, and P. S. Hall, "Integrated wide-narrow band antenna for switched operation," Processing IEEE EuCAP, 3757-3760, Berlin, Germany, 2009. Google Scholar
11. Boudaghi, H., M. Azarmanesh, and M. Mehranpour, "A frequency-reconfigurable monopole antenna using switchable slotted ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 2012. Google Scholar
12. Dushmantha, N., P. Thalakotuna, L. Matekovits, M. Heimlich, K. P. Esselle, and S. G. Hay, "Active switching devices in a tunable EBG structure: Placement strategies and modeling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1740-1751, 2011.
doi:10.1163/156939311797164873 Google Scholar
13. Dushmantha, N., P. Thalakotuna, K. P. Esselle, L. Matekovits, M. Heimlich, and S. G. Hay, "Changing the electromagnetic bandgap and stopbands in a multistate periodic circuit," Microwave and Optical Technology Letters (MOTL), Vol. 55, No. 8, 1871-1874, Aug. 2013.
doi:10.1002/mop.27675 Google Scholar
14. Kushwaha, N. and R. Kumar, "Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604 Google Scholar
15. Alpha Industries "ALPHA-6355 beamlead PIN diode,", Data sheet, [Online]. Available: http://www.datasheetarchive.com/ALPHA/PIN diode 6355-datasheet.html. Google Scholar
16. Computer Simulation Technology - CST (Microwave Studio MWS), Version-2014.
17. Ray, K. P. and G. Kumar, "Determination of resonant frequency of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 23, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G Google Scholar
18. Langley, R. J. and E. A. Parker, "Equivalent-circuit model for arrays of square loops," Electron Lett., Vol. 18, 294-296, 1982.
doi:10.1049/el:19820201 Google Scholar
19. Chung, Y.-C., K.-W. Lee, I.-P. Hong, M.-G. Lee, H.-J. Chun, and J.-G. Yook, "Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model," IEICE Electron. Expr., Vol. 8, No. 2, 89-95, 2011.
doi:10.1587/elex.8.89 Google Scholar
20. Kushwaha, N., R. Kumar, R. V. S. Ram Krishna, and T. Oli, "Design and analysis of new compact UWB frequency selective surface and its equivalent circuit," Progress In Electromagnetics Research C, Vol. 46, 31-39, 2014.
doi:10.2528/PIERC13100908 Google Scholar