1. Ren, X. J., Y. Le, and B. C. Han, "Asymmetric electromagnetic analysis and design of a permagnet biased axial magnetic bearings," Progress In Electromagnetics Research Symposium, 574-586, Shanghai, China, August 8–11, 2016. Google Scholar
2. Eaton, D., J. Rama, and S. Singhal, "Magnetic bearing applications & economics," Proc. PCIC, 1-9, September 2010. Google Scholar
3. Ren, X. J., Y. Le, and B. C. Han, "System electromagnetic loss analysis and temperature field estimate of a magnetically suspended motor," Progress In Electromagnetics Research M, Vol. 55, 51-61, 2017.
doi:10.2528/PIERM17010904 Google Scholar
4. Eaton, D., J. Rama, and S. Singhal, "Magnetic bearing applications & economics," Proc. PCIC, 1-9, September 2010. Google Scholar
5. Betschon, F., Design Principles of Integrated Magnetic Bearings, Swiss Federal Institute of Technology, 2000.
6. Han, B. C., S. Q. Zheng, Y. Le, et al. "Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel," IEEE Trans. Magn., Vol. 49, No. 10, 5356-5370, 2013.
doi:10.1109/TMAG.2013.2263284 Google Scholar
7. Le, Y., J. Fang, and J. Sun, "An integrated passive magnetic damping system for high-speed compressor with flexible rotor," Proc. ImechE, Part C: J. Mechanical Engineering Science, Vol. 229, No. 6, 1150-1161, 2015.
doi:10.1177/0954406214542038 Google Scholar
8. Fang, J., C. Wang, and J. Tang, "Modeling and analysis of a novel conical magnetic bearing for vernier-gimballing magnetically suspended flywheel," Proc. ImechE, Part C: J Mechanical Engineering Science, Vol. 228, No. 13, 2416-2425, 2014.
doi:10.1177/0954406213517488 Google Scholar
9. Fang, J. C., S. Q. Zheng, B. C. Han, et al. "AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor," IEEE Transactions on Mechatronics, Vol. 18, No. 1, 32-43, 2013.
doi:10.1109/TMECH.2011.2161877 Google Scholar
10. Zheng, S. Q., B. C. Han, L. Guo, et al. "Composite hierarchical antidisturbance control for magnetic bearing system subject to multiple external disturbances," IEEE Transactions on Industrial Electronics, Vol. 61, No. 12, 7004-7012, 2014.
doi:10.1109/TIE.2014.2316226 Google Scholar
11. Fang, J. C., Y. Le, J. J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443 Google Scholar
12. Noh, M. D., S. Cho, J. Kyung, S. Ro, and J. Park, "Design and implementation of a fault-tolerant magnetic bearing system for turbo-molecular vacuum pump," IEEE/ASME Trans. Mech., Vol. 10, No. 6, 626-631, 2005.
doi:10.1109/TMECH.2005.859830 Google Scholar
13. Selmy, M., M. Fanni, and A. M. Mohamed, "Design and control of a novel contactless active robotic joint using AMB," 2015 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 144-149, December 2015.
doi:10.1109/ICARSC.2015.12 Google Scholar
14. Ren, X. J., Y. Le, J. J. Sun, et al. "Magnetic flux leakage modeling and optimization of a combined radial-axial hybrid magnetic bearing for DC motor," IET Electric Power Applications, Vol. 17, No. 2, 212-221, 2017.
doi:10.1049/iet-epa.2016.0259 Google Scholar
15. Liu, X. X., J. Y. Dong, Y. Du, et al. "Design and static performance analysis of a novel axial hybrid magnetic bearing," IEEE Trans. Magn., Vol. 50, No. 11, 8300404, 2014. Google Scholar
16. Zhang, W. and H. Zhu, "Improved model and experiment for AC-DC three-degree-of-freedom hybrid magnetic bearing," IEEE Trans. Magn., Vol. 49, No. 11, 5554-5565, 2013.
doi:10.1109/TMAG.2013.2271754 Google Scholar
17. Bachovchin, K. D., J. F. Hoburg, and R. F. Post, "Magnetic fields and forces in permanent magnet levitated bearings," IEEE Trans. Magn., Vol. 48, No. 7, 2112-2120, 2012.
doi:10.1109/TMAG.2012.2188140 Google Scholar
18. Fang, J. C., X. Wang, T. Wen, et al. "Homopolar 2-pole radial permanent-magnet biased magnetic bearing with low rotating loss," IEEE Trans. Magn., Vol. 48, No. 8, 2293-2303, 2012.
doi:10.1109/TMAG.2012.2192131 Google Scholar
19. Eryong, H. and L. Kun, "Investigation of axial carrying capacity of radial hybrid magnetic bearing," IEEE Trans. Magn., Vol. 48, No. 1, 38-46, 2012.
doi:10.1109/TMAG.2011.2167018 Google Scholar
20. Eryong, H. and L. Kun, "A novel structure for low-loss radial hybrid magnetic bearing," IEEE Trans. Magn., Vol. 47, No. 12, 4725-4733, 2011.
doi:10.1109/TMAG.2011.2160649 Google Scholar
21. Zhu, H. and J. Ju, "Design and optimisation of three-pole radial-axial HMB with independent radial and axial carrying capacity," 2015 IEEE Magnetics Conference (INTERMAG), Beijing, May 11–15, 2015. Google Scholar
22. Garcia, P., J. M. Guerrero, F. Briz, et al. "Sensorless control of three-pole active magnetic bearings using saliency-trackingbased methods," IEEE Trans. Ind. Appl., Vol. 46, No. 4, 1476-1484, 2010.
doi:10.1109/TIA.2010.2049973 Google Scholar
23. Ji, L., L. X. Xu, and C. W. Jin, "Research on a low power consumption six-pole heteropolar hybrid magnetic bearing," IEEE Trans. Magn., Vol. 49, No. 8, 4918-4926, 2013.
doi:10.1109/TMAG.2013.2238678 Google Scholar
24. Le, Y., J. C. Fang, and J. J. Sun, "Design of a halbach array permanent magnet damping system for high speed compressor with large thrust load," IEEE Trans. Magn., Vol. 51, No. 1, 8300109, 2015. Google Scholar
25. Tomczuk, B., J. Zimon, and D. Wajnert, "Eddy current influence on the parameters of the active magnetic bearing," Proceedings of the 12th International Symposium on Magnetic Bearings, 267-272, Wuhan, China, August 22–25, 2010. Google Scholar
26. Zimon, J., B. Tomczuk, and D. Wajnert, "Field-circuit modeling of AMB system for various speeds of the rotor," Journal of Vibroengineering, Vol. 14, 165-170, March 2012. Google Scholar
27. Tomczuk, B., D. Wajnert, and J. Zimon, "Influence of bias current value on properties of active magnetic bearing," Solid State Phenomena, Vol. 198, 513-518, 2013.
doi:10.4028/www.scientific.net/SSP.198.513 Google Scholar
28. Tomczuk, B., J. Zimon, and D. Wajnert, "Field-circuit modeling of the 12-pole magnetic bearing characteristics," Proceedings of Compumag. 2013, Budapest, Hungary, June 30--July 4, 2013. Google Scholar
29. Wajnert, D. and B. Tomczuk, "Simulation for the determination of the hybrid magnetic bearing's electromagnetic parameters," Electrical Review, 157-160, Poland, (Przegl¸ad Elektrotechniczny), ISSN 0033-2097, R. 93 NR 2/2017. Google Scholar
30. Gieras, J. F., Z. J. Piech, and B. Z. Tomczuk, Linear Synchronous Motors, Taylor & Francis, 2012.
31. Datta, R., S. Pradhan, and B. Bhattacharya, "Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm," IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 46, No. 1, 16-26, 2016.
doi:10.1109/TSMC.2015.2437847 Google Scholar
32. Lin, C. T., M. Prasad, and A. Saxena, "An improved polynomial neural network classifier using real-coded genetic algorithm," IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 45, No. 11, 1389-1401, 2015.
doi:10.1109/TSMC.2015.2406855 Google Scholar
33. Zhang, S. G., K. R. Pattipati, Z. Hu, et al. "Optimal selection of imperfect tests for fault detection and isolation," IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 6, 1370-1384, 2013.
doi:10.1109/TSMC.2013.2244210 Google Scholar