1. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," IEEE Int. Conf. Commun. (ICC), 2423-2429, Jun. 2015. Google Scholar
2. Fichte, L. O., "Interaction of biological tissue with electromagnetic waves in the RF range," Asia-Pacific Conf. Env. Electromag. (CEEM), 10, Nov. 2015. Google Scholar
3. Agarwal, K. and Y. X. Guo, "Interaction of electromagnetic waves with humans in wearable and biomedical implant antennas," Asia-Pacific Symp. on Electromag. Compat. (APEMC), 154-157, May 2015.
doi:10.1109/APEMC.2015.7175377 Google Scholar
4. Ostadrahimi, M., P. Mojabi, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A novel microwave tomography system based on the scattering probe technique," IEEE Trans. Instrum. Meas., Vol. 61, No. 2, 379-390, Feb. 2012.
doi:10.1109/TIM.2011.2161931 Google Scholar
5. Ferreira, D., P. Pires, R. Rodrigues, and R. F. S. Caldeirinha, "Wearable textile antennas: examining the effect of bending on their performance," IEEE Antennas Propag. Mag., Vol. 59, No. 3, 54-59, Jun. 2017. Google Scholar
6. De Santis, V., M. Feliziani, and F. Maradei, "Safety assessment of UWB radio systems for body area network by the FD2TD method," IEEE Trans. Mag., Vol. 46, No. 8, 3245-3248, Aug. 2010. Google Scholar
7. Aguirre, E., J. Arpn, L. Azpilicueta, S. de Migue, V. Ramos, and F. Falcone, "Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction," Progress In Electromagnetics Research B, Vol. 43, 189-209, Sep. 2012. Google Scholar
8. Ojaroudiparchin, N., M. Shen, S. Zhang, and G. F. Pedersen, "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, Feb. 2016. Google Scholar
9. Thotahewa, K. M. S., J. M. Redoute, and M. R. Yuce, "SAR SA and temperature variation in the human head caused by IR-UWB implants operating at 4 GHz," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 5, 2161-2169, May 2013. Google Scholar
10. Mittra, M., Computational Electromagnetics: Recent Advances and Engineering Applications, 3rd Ed., Springer, 2014.
11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
12. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2015.
13. Ansoft HFSS 11.1 user's guide, ANSYS Inc., Pittsburgh, PA, USA, 2009.
14. XFDTD 7.3 user's manual, Remcom Inc., State College, PA, USA, 2012.
15. Chew, W. C., E. Michielssen, J. M. Song, and J. M. Jin, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
16. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
17. Massey, J. W., C. Liu, A. Menshov, and A. E. Yilmaz, "Bioelectromagnetic benchmarks,", 2016, [Online]. Available: http://bit.ly/BioEM-Benchmarks. Google Scholar
18. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 856-869, Jul. 1986. Google Scholar
19. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 13, No. 2, 631-644, 1992. Google Scholar
20. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, Jun. 1993. Google Scholar
21. Ergul, O. and L. Gurel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems, Wiley-IEEE Press, 2014.
22. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2006.
23. Aronsson, J. and V. Okhmatovski, "Vectorial low-frequency MLFMA for the combined field integral equation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 532-535, 2011. Google Scholar
24. Catedra, M. F., R. F. Torres, J. Basterrechea, and E. Gago, The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics, Artech House, 1995.
25. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1255-1251, Sep.–Oct. 1996. Google Scholar
26. Yang, K. and A. Yilmaz, "A three-dimensional adaptive integral method for scattering from structures embedded in layered media," IEEE Trans. Geo. Remote Sens., Vol. 50, No. 4, 1130-1139, Apr. 2012. Google Scholar
27. Bebendorf, M. and S. Rjasanow, "Adaptive low-rank approximation of collocation matrices," Computing, Vol. 70, No. 1, 1-24, Mar. 2003. Google Scholar
28. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, Nov. 2005. Google Scholar
29. Mitra, R. and C. Li, "The art and science of matrix preconditioning --- A review," IEEE Int. Conf. Comput. EM (ICCEM), 17-19, Feb. 2016. Google Scholar
30. Vico, F., L. Greengard, and M. Ferrando, "Decoupled field integral equations for electromagnetic scattering from homogeneous penetrable obstacles,", Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.06741. Google Scholar
31. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I. Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999. Google Scholar
32. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, No. 4, 295-334, Aug. 2003. Google Scholar
33. Martinsson, P. G. and V. Rokhlin, "A fast direct solver for boundary integral equations in two dimensions," J. Comput. Phyis., Vol. 205, No. 1, 1-23, May 2005. Google Scholar
34. Guo, H., J. Hu, and E. Michielssen, "On MLMDA/Butterfly compressibility of inverse integral operators," IEEE Antennas Wireless Propag. Lett., Vol. 12, 31-34, 2013. Google Scholar
35. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1 M unknowns," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2306-2313, Aug. 2008. Google Scholar
36. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4314-4324, Aug. 2014. Google Scholar
37. Corona, E., A. Rahimian, and D. Zorin, "A Tensor-Train accelerated solver for integral equations in complex geometries," J. Comput. Phys., Vol. 334, 145-169, Apr. 2017. Google Scholar
38. Oseledets, I. V., "Tensor-Train decomposition," SIAM J. Sci. Comput., Vol. 33, No. 5, 2295-2317, 2011. Google Scholar
39. Menshov, A. and V. Okhmatovski, "New single-source surface integral equations for scattering on penetrable cylinders and current flow modeling in 2-D conductors," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 1, 341-350, Jan. 2013. Google Scholar
40. Hosseini, F. L. S., A. Menshov, R. Gholami, J. Mojolagbe, and V. Okhmatovski, "Novel single-source integral equation for scattering problems by 3D dielectric objects," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 797-807, Feb. 2018. Google Scholar
41. Zheng, S., R. Gholami, and V. Okhmatovski, "Surface-volume-surface electric field integral equation for solution of scattering problems on 3-D dielectric objects in multilayered media," IEEE Trans. Microw. Theory Tech., 1-16, 2018. Google Scholar
42. Chen, Z., R. Gholami, J. Mojolagbe, and V. Okhmatovski, "Formulation of Surface-Volume-Surface-EFIE for solution of 3D scattering problems on composite dielectric objects," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1043-1047, Jun. 2018. Google Scholar
43. Mojolagbe, J., R. Gholami, and V. Okhmatovski, "On complexity reduction in solution of scattering problems on well-conducting 3D objects with Surface-Volume-Surface EFIE," Appl. Comput. Electromag. Conf. (ACES), 1-2, May 2018. Google Scholar
44. Swatek, D. Investigation of single source surface integral equation for electromagnetic wave scattering by dielectric bodies, Ph.D. dissertation, Univ. Manitoba, Winnipeg, Canada, 1999.
45. Qian, Z. G., W. C. Chew, and R. Suaya, "Generalized impedance boundary condition for conductor modeling in surface integral equation," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 11, 2354-2364, Nov. 2007. Google Scholar
46. Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, 1969.
47. Kishk, A. and L. Shafai, "Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 666-673, May 1986. Google Scholar
48. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982. Google Scholar
49. Martinsson, P.-G., V. Rokhlin, and M. Tygert, "A randomized algorithm for the decomposition of matrices," Appl. Comput. Harmon. Anal., Vol. 30, No. 1, 47-68, Jan. 2011. Google Scholar
50. Brick, Y. and A. Yilmaz, "ast multilevel computation of low-rank representation of H-matrix blocks," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5326-5334, Dec. 2016. Google Scholar
51. Borm, S., L. Grasedyck, and W. Hackbusch, Hierarchical matrices, Technical Report 21, Max Planck Institute for Mathematics in the Sciences, 2006.
52. Chew, W. C., Waves and Fields in Inhomogeneous Media, Wiley-IEEE Press, 1999.
53. FEKO user's manual, , EM Software & Syst. Inc., Stellenbosch 7600, South Africa, 2014.
54. Woo, A. C., H. T. G. Wang, and M. J. Schuh, "Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas Propag. Mag., Vol. 35, No. 1, 84-89, Feb. 1993. Google Scholar
55. IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, IEEE Std 1528-2013 (Rev. IEEE Std 1528-2003), Sep. 2013.