Vol. 98
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-01-27
Efficient Computation of Sideband Power Losses in Pulse-Shifted Non-Uniform Time-Modulated Array with Arbitrary Element Pattern
By
Progress In Electromagnetics Research B, Vol. 98, 59-75, 2023
Abstract
This paper presents the mathematical formulation for the generalized closed-form expressions to calculate sideband power (PSR) of a nonuniform period time modulated array (NTMA) antenna with volumetric geometry by using pulse shifting strategy. For the arbitrary array geometry, the generalized expression of PSR is obtained by considering the universal omnidirectional element pattern in the form sinaθ|cosθ|b, a > -1, b > -1/2. Then, corresponding to different array structures such as linear, planar, and volumetric ones, the derived expression is simplified for different element patterns with possible combination of `a' and `b'. Through representative numerical results it is demonstrated that the obtained simplified expressions without hypergeometric function are useful to accurately calculate the amount of power losses due to sideband radiations with significantly less time than the conventional numerical integration (NI) method.
Citation
Sujoy Mandal, and Sujit Kumar Mandal, "Efficient Computation of Sideband Power Losses in Pulse-Shifted Non-Uniform Time-Modulated Array with Arbitrary Element Pattern," Progress In Electromagnetics Research B, Vol. 98, 59-75, 2023.
doi:10.2528/PIERB22091106
References

1. He, C., Q. Chen, A. Cao, J. Chen, and R. Jin, "Application of the time modulated array in satellite communications," IEEE Wireless Commun., Vol. 26, No. 2, 24-30, Apr. 2019.
doi:10.1109/MWC.2019.1800287        Google Scholar

2. Nusenu, S. Y., W. Wang, and A. Basit, "Time-modulated FD-MIMO array for integrated radar and communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1015-1019, Jun. 2018.
doi:10.1109/LAWP.2018.2829729        Google Scholar

3. Rocca, P., F. Yang, L. Poli, and S. Yang, "Time-modulated array antennas --- theory, techniques, and applications," J. Electromagn. Waves Appl., Vol. 33, No. 12, 1503-1531, Sep. 2019.
doi:10.1080/09205071.2019.1627251        Google Scholar

4. Kummer, W., A. Villeneuve, T. Fong, and F. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 633-639, Nov. 1963.
doi:10.1109/TAP.1963.1138102        Google Scholar

5. Ni, G., C. He, J. Chen, Y. Liu, and R. Jin, "Low sideband radiation beam scanning at carrier frequency for time-modulated array by non-uniform period modulation," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3695-3704, May 2020.
doi:10.1109/TAP.2020.2969889        Google Scholar

6. Mandal, S. K., G. Mahanti, and R. Ghatak, "Synthesis of simultaneous multiple-harmonic-patterns in time-modulated linear antenna arrays," Progress In Electromagnetics Research M, Vol. 34, 135-142, 2014.
doi:10.2528/PIERM13111802        Google Scholar

7. Chakraborty, A., G. Ram, and D. Mandal, "Multibeam steered pattern synthesis in time-modulated antenna array with controlled harmonic radiation," Int. J. RF Microw. Comput. Eng., Vol. 31, No. 5, e22597, 2021.        Google Scholar

8. Chen, J., et al. "Direction nding based on time-modulated array with multiharmonic analysis," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5753-5758, Feb. 2020.
doi:10.1109/TAP.2020.2969972        Google Scholar

9. Xie, X. and Z. Xu, "Direction finding of BPSK signals using time-modulated array," IEEE Microw. Compon. Lett., Vol. 28, No. 7, 618-620, Jul. 2018.
doi:10.1109/LMWC.2018.2834523        Google Scholar

10. Youn, Y., J. Kim, S. Oh, and S. H. Yi, "Time-modulated array system controlled with bipolar squared periodic sequence for direction of arrival estimation," IEEE Wireless Commun. Lett., Vol. 10, No. 9, 1895-1898, Sep. 2021.
doi:10.1109/LWC.2021.3085099        Google Scholar

11. Mukherjee, A., S. K. Mandal, and R. Ghatak, "Efficient computational method for fast extraction of faulty elements from multipattern time-modulated arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1982-1991, Apr. 2021.
doi:10.1109/TAP.2020.3026887        Google Scholar

12. Rocca, P., Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4-D arrays as enabling technology for cognitive radio systems," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1102-1116, Mar. 2014.
doi:10.1109/TAP.2013.2288109        Google Scholar

13. Ni, D., S. Yang, Y. Chen, and J. Guo, "A study on the application of subarrayed time-modulated arrays to MIMO radar," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1171-1174, Nov. 2016.        Google Scholar

14. Chang, Y., H. Jiang, L. Wang, and K. Ding, "Tri-band phase switched screen based on time modulation," Int. J. RF Microw. Comput. Eng., Vol. 32, No. 4, e23058, 2022.        Google Scholar

15. Gonzalez-Coma, J. P., R. Maneiro-Catoira, and L. Castedo, "Hybrid precoding with time- modulated arrays for mmwave MIMO systems," IEEE Access, Vol. 6, 59422-59437, Oct. 2018.        Google Scholar

16. Maneiro-Catoira, R., J. C. Bregains, J. A. Garcia-Naya, and L. Castedo, "On the feasibility of time- modulated arrays for digital linear modulations: a theoretical analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6114-6122, Dec. 2014.
doi:10.1109/TAP.2014.2365827        Google Scholar

17. Zhu, Q., S. Yang, R. Yao, and Z. Nie, "Directional modulation based on 4-D antenna arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 621-628, Feb. 2014.
doi:10.1109/TAP.2013.2290122        Google Scholar

18. He, C., H. Yu, X. Liang, J. Geng, and R. Jin, "Sideband radiation level suppression in time- modulated array by nonuniform period modulation," IEEE Antennas Wireless Propag. Lett., Vol. 14, 606-609, 2015.
doi:10.1109/LAWP.2014.2373639        Google Scholar

19. Guo, J., S. Yang, Y. Chen, P. Rocca, J. Hu, and A. Massa, "Efficient sideband suppression in 4-D antenna arrays through multiple time modulation frequencies," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7063-7072, Dec. 2017.
doi:10.1109/TAP.2017.2766444        Google Scholar

20. Gassab, O., A. Azrar, A. Dahimene, and S. Bouguerra, "Efficient mathematical method to suppress sidelobes and sidebands in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 836-840, May 2019.
doi:10.1109/LAWP.2019.2903200        Google Scholar

21. Yang, J., W. Li, and X. Shi, "Phase modulation technique for four-dimensional arrays," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1393-1396, Jul. 2014.        Google Scholar

22. Ni, G., C. He, and R. Jin, "An improved modulation module in time-modulated array," IEEE Antennas Wireless Propag. Lett., 1-1, 2021.        Google Scholar

23. Poli, L., P. Rocca, L. Manica, and A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microw. Antennas Propag., Vol. 4, No. 9, 1157-1164, Sep. 2010.
doi:10.1049/iet-map.2009.0042        Google Scholar

24. Aksoy, E. and E. Afacan, "Sideband level suppression improvement via splitting pulses in time modulated arrays under static fundamental radiation," PIERS Proceedings, 364-367, Suzhou, China, Sep. 2011.        Google Scholar

25. Yang, S., Y. B. Gan, A. Qing, and P. K. Tan, "Design of a uniform amplitude time modulated linear array with optimized time sequences," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2337-2339, 2005.
doi:10.1109/TAP.2005.850765        Google Scholar

26. Zhu, Q., S. Yang, L. Zheng, and Z. Nie, "Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4436-4439, Jul. 2012.
doi:10.1109/TAP.2012.2207082        Google Scholar

27. Poli, L., P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microw. Antennas Propag., Vol. 6, No. 2, 214-222, Jan. 2012.
doi:10.1049/iet-map.2011.0159        Google Scholar

28. Mandal, S., G. Mahanti, and R. Ghatak, "Design of a time-modulator to synthesize different patterns in time-modulated antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 9, 1118-1130, Oct. 2014.
doi:10.1080/09205071.2014.908150        Google Scholar

29. Zhang, S. R., Y. X. Zhang, and C. Y. Cui, "Efficient multiobjective optimization of time-modulated array using a hybrid particle swarm algorithm with convex programming," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 11, 1842-1846, Nov. 2020.
doi:10.1109/LAWP.2020.3014366        Google Scholar

30. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time-modulated linear arrays by the differential evolution algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 1, 173-175, 2002.
doi:10.1109/LAWP.2002.807789        Google Scholar

31. Poli, L., P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1408-1411, Apr. 2010.
doi:10.1109/TAP.2010.2041165        Google Scholar

32. Fondevila, Bregains, Ares, and Moreno, "Optimizing uniformly excited linear arrays through time modulation," IEEE Antennas Wireless Propag. Lett., Vol. 3, 298-301, 2004.
doi:10.1109/LAWP.2004.838833        Google Scholar

33. Tong, Y. and A. Tennant, "Reduced sideband levels in time-modulated arrays using half-power sub-arraying techniques," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 301-303, Nov. 2010.
doi:10.1109/TAP.2010.2090484        Google Scholar

34. Tong, Y. and A. Tennant, "Sideband level suppression in time-modulated linear arrays using modi ed switching sequences and xed bandwidth elements," Electron. Lett., Vol. 48, No. 1, 10-11, Jan. 2012.
doi:10.1049/el.2011.2378        Google Scholar

35. Mukherjee, A., S. K. Mandal, and R. Ghatak, "Differential evolution to synthesize low sidelobe thinned isophoric time-modulated planar array with increased directivity," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 11, e21938, 2019.        Google Scholar

36. Bregains, J. C., J. Fondevila-Gomez, G. Franceschetti, and F. Ares, "Signal radiation and power losses of time-modulated arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1799-1804, Jun. 2008.
doi:10.1109/TAP.2008.923345        Google Scholar

37. Aksoy, E. and E. Afacan, "Calculation of sideband power radiation in time-modulated arrays with asymmetrically positioned pulses," IEEE Antennas Wireless Propag. Lett., Vol. 11, 133-136, Jan. 2012.
doi:10.1109/LAWP.2012.2185916        Google Scholar

38. Poli, L., P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays-Analysis and optimisation of the sideband radiations," IET Microw., Antennas Propag., Vol. 4, No. 9, 1165-1171, Sep. 2010.
doi:10.1049/iet-map.2009.0379        Google Scholar

39. Aksoy, E., "Calculation of sideband radiations in time-modulated volumetric arrays and generalization of the power equation," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4856-4860, Sep. 2014.
doi:10.1109/TAP.2014.2332004        Google Scholar

40. Bekele, E. T., L. Poli, P. Rocca, M. D. Urso, and A. Massa, "Pulse-shaping strategy for time modulated arrays | Analysis and design," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3525-3537, Jul. 2013.
doi:10.1109/TAP.2013.2256096        Google Scholar

41. Zeng, Q., et al. "Calculation of the total radiated power for 4-D antenna arrays with arbitrary time modulated waveform," IEEE Trans. Antennas Propag., Vol. 69, No. 12, 9015-9020, Dec. 2021.
doi:10.1109/TAP.2021.3098591        Google Scholar

42. Zeng, Q., P. Yang, H. Lin, F. Yang, and S. Yang, "Generalized closed-form sidebands' radiation expressions for 4-D antenna arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 1193-1197, Feb. 2021.
doi:10.1109/TAP.2020.3010943        Google Scholar

43. Kanbaz, I., U. Yesilyurt, and E. Aksoy, "A study on harmonic power calculation for nonuniform period linear time modulated arrays," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2369-2373, Dec. 2018.
doi:10.1109/LAWP.2018.2875530        Google Scholar

44. Mandal, S. and S. K. Mandal, "Harmonic power losses in time-modulated arrays with non-uniform period modulation," AEU | Int. J. Electron. Commun., Vol. 108, 45-52, Aug. 2019.
doi:10.1109/LAWP.2019.2957528        Google Scholar

45. Kanbaz, I., U. Yesilyurt, S. Kuzu, and E. Aksoy, "Total harmonic power of arbitrarily switched nonuniform period time-modulated arrays," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 193-197, Jan. 2020.
doi:10.1109/JSEN.2022.3142367        Google Scholar

46. Yesilyurt, U., I. Kanbaz, and E. Aksoy, "Effect of ground plane on power losses and efficiency for uniform period time modulated arrays," IEEE Sensors J., Vol. 22, No. 4, 3637-3647, Feb. 2022.        Google Scholar

47. Yesilyurt, U., I. Kanbaz, and E. Aksoy, "Power losses and efficiency analysis of non-uniform time modulated arrays over a ground plane," AEU-Int. J. Electron. Commun., Vol. 146, No. 154106, Mar. 2022.
doi:10.1109/LAWP.2009.2027452        Google Scholar

48. Manica, L., P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time- modulated linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 8, 843-846, 2009.        Google Scholar

49. Blinder, S. M., "Chapter 13 --- Partial differential equations and special functions," Guide to Essential Math (2nd Edition), S. M. Blinder, Ed., 227-251, Elsevier, Oxford, 2013.        Google Scholar

50. Pearson, J. W., Computation of Hypergeometric Functions, University of Oxford, 2009.

51. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, UK, 1995.