1. Aharonov, Y. and D. Bohm, "Signicance of the electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.
doi:10.1103/PhysRev.115.485 Google Scholar
2. Ehrenberg, W. and R. E. Siday, "The refractive index in electron optics and the principles of dynamics," Proc. Phys. Soc. B, Vol. 62, 162-173, 1949.
doi:10.1088/0370-1301/62/1/303 Google Scholar
3. Felsager, B., Geometry, Particles, and Fields, Springer, New York, 1998.
doi:10.1007/978-1-4612-0631-6
4. Shadowitz, A., The Electromagnetic Field, Dover, New York, 1988, First published 1975.
5. Griffiths, D. J., Introduction to Quantum Mechanics, 2nd Edition, Prentice Hall, New Jersey, 2005.
6. Chambers, R. G., "Shift of an electron interference pattern by enclosed magnetic flux," Phys. Rev. Lett., Vol. 5, 3-5, 1960.
doi:10.1103/PhysRevLett.5.3 Google Scholar
7. Batelaan, H. and A. Tonomura, "The Aharonov-Bohm effects: Variations on a subtle theme," Physics Today, 38-43, Sep. 2009.
doi:10.1063/1.3226854 Google Scholar
8. Olariu, S. and I. Iovitzu Popescu, "The quantum effects of electromagnetic fluxes," Rev. Mod. Phys., Vol. 57, 339-436, 1985.
doi:10.1103/RevModPhys.57.339 Google Scholar
9. Ehrlichson, H., "Aharonov-Bohm effect --- quantum effects on charged particles in field-free regions," Am. J. Phys., Vol. 38, 162-173, 1970.
doi:10.1119/1.1976266 Google Scholar
10. Essen, H. and J. C.-E. Sten, "The magnetic interaction energy between an infinite solenoid and a passing point charge," Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018.
doi:10.2528/PIERM18052908 Google Scholar
11. Trammel, G. T., "Aharonov-Bohm paradox," Phys. Rev., Vol. 134, B1183-1184, 1964.
doi:10.1103/PhysRev.134.B1183 Google Scholar
12. Boyer, T. H., "Misinterpretation of the Aharonov-Bohm effect," Am. J. Phys., Vol. 40, 56-59, 1972.
doi:10.1119/1.1986446 Google Scholar
13. Boyer, T. H., "Classical electromagnetic interaction of a charged particle with a constant-current solenoid," Phys. Rev. D, Vol. 8, 1667-1679, 1973.
doi:10.1103/PhysRevD.8.1667 Google Scholar
14. Boyer, T. H., "Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect," Phys. Rev. D, Vol. 8, 1679-1693, 1973.
doi:10.1103/PhysRevD.8.1679 Google Scholar
15. Boyer, T. H., "Proposed experimental test for the paradoxical forces associated with the Aharonov-Bohm phase shift," Foundations of Physics Letters, Vol. 19, 491-498, 2006.
doi:10.1007/s10702-006-0907-7 Google Scholar
16. Fearn, H. and K. Nguyen, "Derivation of the Aharonov-Bohm phase shift using classical forces,", E-print arXiv:1104.1449 [quant-ph], Apr. 2011. Google Scholar
17. Reiss, H. R., "Physical restrictions on the choice of electromagnetic gauge and their practical consequences," J. Phys. B: At. Mol. Opt. Phys., Vol. 50, 075003-1-7, 2017.
doi:10.1088/1361-6455/aa6375 Google Scholar
18. Xiao, G., "An interpretation for Aharonov-Bohm effect with classical electromagnetic theory,", E-print arXiv:2201.12292 [physics.class-ph], Jan. 2022. Google Scholar
19. Boyer, T. H., "The classical Aharonov-Bohm interaction as a relativity paradox," Eur. J. Phys., Vol. 44, 035202-1-11, 2023. Google Scholar
20. Boyer, T. H., "Classical electromagnetic interaction of a charge with a solenoid or toroid,", E-print arXiv:2302.01936 [physics.class-ph], Feb. 2023. Google Scholar
21. Darwin, C. G., "The dynamical motions of charged particles," Philos. Mag. (UK), Vol. 39, 537-551, 1920.
doi:10.1080/14786440508636066 Google Scholar
22. Kennedy, F. J., "Approximately relativistic interactions," Am. J. Phys., Vol. 40, 63-74, 1972.
doi:10.1119/1.1986448 Google Scholar
23. Essen, H., "Darwin magnetic interaction energy and its macroscopic consequences," Phys. Rev. E, Vol. 53, 5228-5239, 1996.
doi:10.1103/PhysRevE.53.5228 Google Scholar
24. Essen, H., "Magnetism of matter and phase-space energy of charged particle systems," J. Phys. A: Math. Gen., Vol. 32, 2297-2314, 1999.
doi:10.1088/0305-4470/32/12/005 Google Scholar
25. Boyer, T. H., "Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: Considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts," J. Phys. A: Math. Gen., Vol. 39, 3455-3477, 2006.
doi:10.1088/0305-4470/39/13/021 Google Scholar
26. Essen, H., "Magnetic energy, superconductivity, and dark matter," Progress in Physics, Vol. 16, 29-32, 2020. Google Scholar
27. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4th Edition, Pergamon, Oxford, 1975.
28. Jackson, J. D., Classical Electrodynamics, 3rd Edition, John Wiley & Sons, New York, 1999.
29. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2nd Edition, Dover, New York, 2005, First published 1962.
30. Choudhuri, A. R., Advanced Electromagnetic Theory, Springer Nature, Singapore, 2022.
doi:10.1007/978-981-19-5944-8
31. Comay, E., "The physical meaning of gauge transformations in electrodynamics,", E-print arXiv:physics/0611148 [physics.gen-ph], Nov. 2006. Google Scholar
32. Konopinski, E. J., "Electromagnetic Fields and Relativistic Particles," McGraw-Hill, New York, 1981. Google Scholar
33. Konopinski, E. J., "What the electromagnetic vector potential describes," Am. J. Phys., Vol. 46, 499-502, 1978.
doi:10.1119/1.11298 Google Scholar
34. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd Edition, Pergamon, Oxford, 1977.
35. Schwinger, J., L. L. DeRaad, Jr., K. A. Milton, and W. Tsai, Classical Electrodynamics, Perseus books, Reading, Massachusetts, 1998.
36. Sharma, N. L., "Field versus action-at-a-distance in a static situation," Am. J. Phys., Vol. 56, 420-423, 1988.
doi:10.1119/1.15592 Google Scholar
37. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Mainly Electromagnetism and Matter, Addison-Wesley, Reading, Massachusetts, denitive Edition, 2006.
38. McGregor, S., R. Hotovy, A. Caprez, and H. Batelaan, "On the relation between the Feynman paradox and Aharonov-Bohm effects," New Journal of Physics, Vol. 14, 093020-1-22, 2012.
doi:10.1088/1367-2630/14/9/093020 Google Scholar
39. Stettner, R., "Conserved quantities and radiation effects for a closed system of charged particles," Ann. Phys. (N.Y.), Vol. 67, 238-251, 1971.
doi:10.1016/0003-4916(71)90011-X Google Scholar
40. Kittel, C., Introduction to Solid State Physics, 7th Edition, John Wiley & Sons, New York, 1996.
41. Essen, H., "An exact formula for the electromagnetic momentum in terms of the charge density and the Coulomb gauge vector potential," Eur. J. Phys., Vol. 39, 025202-1-9, 2018. Google Scholar
42. Redinz, J. A., "Magnetic energy in quasistatic systems," Eur. J. Phys., Vol. 44, 015202-1-14, 2023.
doi:10.1088/1361-6404/ac9ba5 Google Scholar
43. Singal, A. K., "Wherein lies the momentum in Aharonov-Bohm quantum interference experiment --- A classical physics perspective,", E-print arXiv: arXiv:2301.06502 [quant-ph], Jan. 2023. Google Scholar
44. Primakoff, H. and T. Holstein, "Many-body interactions in atomic and nuclear systems," Phys. Rev., Vol. 55, 1218-1234, 1939.
doi:10.1103/PhysRev.55.1218 Google Scholar
45. Page, L. and N. I. Adams, Electrodynamics, Van Nostrand, New York, 1940.
46. Podolsky, B. and K. S. Kunz, Fundamentals of Electrodynamics, Marcel Dekker, New York, 1969.
47. Boyer, T. H., "Concerning classical forces, energies, and potentials for accelerated point charges," Am. J. Phys., Vol. 91, 74-78, 2023.
doi:10.1119/5.0094457 Google Scholar
48. Griffiths, D. J., Introduction to Electrodynamics, 3rd Edition, Prentice Hall, New Jersey, 1999.