Vol. 100
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-05-14
Equations of Motion of Interacting Classical Charged Particles and the Motion of an Electron Outside a Long Solenoid
By
Progress In Electromagnetics Research B, Vol. 100, 39-53, 2023
Abstract
The equation of motion for a test particle moving in given fixed external fields is analyzed and compared to the corresponding equation of motion derived from the Darwin Lagrangian for a system of interacting charged particles. The two approaches agree as long as the part of the electric field that arises from the partial time derivative of the vector potential is taken into account. It is, however, only via the Darwin approach that the origin of this field can be understood as arising from a breakdown of the test particle approximation. Applying the formalism to an electron moving outside a long solenoid results in a classical analog of the Aharonov-Bohm effect.
Citation
Hanno Essén, "Equations of Motion of Interacting Classical Charged Particles and the Motion of an Electron Outside a Long Solenoid," Progress In Electromagnetics Research B, Vol. 100, 39-53, 2023.
doi:10.2528/PIERB23022806
References

1. Aharonov, Y. and D. Bohm, "Signi cance of the electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.
doi:10.1103/PhysRev.115.485        Google Scholar

2. Ehrenberg, W. and R. E. Siday, "The refractive index in electron optics and the principles of dynamics," Proc. Phys. Soc. B, Vol. 62, 162-173, 1949.
doi:10.1088/0370-1301/62/1/303        Google Scholar

3. Felsager, B., Geometry, Particles, and Fields, Springer, New York, 1998.
doi:10.1007/978-1-4612-0631-6

4. Shadowitz, A., The Electromagnetic Field, Dover, New York, 1988, First published 1975.

5. Griffiths, D. J., Introduction to Quantum Mechanics, 2nd Edition, Prentice Hall, New Jersey, 2005.

6. Chambers, R. G., "Shift of an electron interference pattern by enclosed magnetic flux," Phys. Rev. Lett., Vol. 5, 3-5, 1960.
doi:10.1103/PhysRevLett.5.3        Google Scholar

7. Batelaan, H. and A. Tonomura, "The Aharonov-Bohm effects: Variations on a subtle theme," Physics Today, 38-43, Sep. 2009.
doi:10.1063/1.3226854        Google Scholar

8. Olariu, S. and I. Iovitzu Popescu, "The quantum effects of electromagnetic fluxes," Rev. Mod. Phys., Vol. 57, 339-436, 1985.
doi:10.1103/RevModPhys.57.339        Google Scholar

9. Ehrlichson, H., "Aharonov-Bohm effect --- quantum effects on charged particles in field-free regions," Am. J. Phys., Vol. 38, 162-173, 1970.
doi:10.1119/1.1976266        Google Scholar

10. Essen, H. and J. C.-E. Sten, "The magnetic interaction energy between an infinite solenoid and a passing point charge," Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018.
doi:10.2528/PIERM18052908        Google Scholar

11. Trammel, G. T., "Aharonov-Bohm paradox," Phys. Rev., Vol. 134, B1183-1184, 1964.
doi:10.1103/PhysRev.134.B1183        Google Scholar

12. Boyer, T. H., "Misinterpretation of the Aharonov-Bohm effect," Am. J. Phys., Vol. 40, 56-59, 1972.
doi:10.1119/1.1986446        Google Scholar

13. Boyer, T. H., "Classical electromagnetic interaction of a charged particle with a constant-current solenoid," Phys. Rev. D, Vol. 8, 1667-1679, 1973.
doi:10.1103/PhysRevD.8.1667        Google Scholar

14. Boyer, T. H., "Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect," Phys. Rev. D, Vol. 8, 1679-1693, 1973.
doi:10.1103/PhysRevD.8.1679        Google Scholar

15. Boyer, T. H., "Proposed experimental test for the paradoxical forces associated with the Aharonov-Bohm phase shift," Foundations of Physics Letters, Vol. 19, 491-498, 2006.
doi:10.1007/s10702-006-0907-7        Google Scholar

16. Fearn, H. and K. Nguyen, "Derivation of the Aharonov-Bohm phase shift using classical forces,", E-print arXiv:1104.1449 [quant-ph], Apr. 2011.        Google Scholar

17. Reiss, H. R., "Physical restrictions on the choice of electromagnetic gauge and their practical consequences," J. Phys. B: At. Mol. Opt. Phys., Vol. 50, 075003-1-7, 2017.
doi:10.1088/1361-6455/aa6375        Google Scholar

18. Xiao, G., "An interpretation for Aharonov-Bohm effect with classical electromagnetic theory,", E-print arXiv:2201.12292 [physics.class-ph], Jan. 2022.        Google Scholar

19. Boyer, T. H., "The classical Aharonov-Bohm interaction as a relativity paradox," Eur. J. Phys., Vol. 44, 035202-1-11, 2023.        Google Scholar

20. Boyer, T. H., "Classical electromagnetic interaction of a charge with a solenoid or toroid,", E-print arXiv:2302.01936 [physics.class-ph], Feb. 2023.        Google Scholar

21. Darwin, C. G., "The dynamical motions of charged particles," Philos. Mag. (UK), Vol. 39, 537-551, 1920.
doi:10.1080/14786440508636066        Google Scholar

22. Kennedy, F. J., "Approximately relativistic interactions," Am. J. Phys., Vol. 40, 63-74, 1972.
doi:10.1119/1.1986448        Google Scholar

23. Essen, H., "Darwin magnetic interaction energy and its macroscopic consequences," Phys. Rev. E, Vol. 53, 5228-5239, 1996.
doi:10.1103/PhysRevE.53.5228        Google Scholar

24. Essen, H., "Magnetism of matter and phase-space energy of charged particle systems," J. Phys. A: Math. Gen., Vol. 32, 2297-2314, 1999.
doi:10.1088/0305-4470/32/12/005        Google Scholar

25. Boyer, T. H., "Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: Considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts," J. Phys. A: Math. Gen., Vol. 39, 3455-3477, 2006.
doi:10.1088/0305-4470/39/13/021        Google Scholar

26. Essen, H., "Magnetic energy, superconductivity, and dark matter," Progress in Physics, Vol. 16, 29-32, 2020.        Google Scholar

27. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4th Edition, Pergamon, Oxford, 1975.

28. Jackson, J. D., Classical Electrodynamics, 3rd Edition, John Wiley & Sons, New York, 1999.

29. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2nd Edition, Dover, New York, 2005, First published 1962.

30. Choudhuri, A. R., Advanced Electromagnetic Theory, Springer Nature, Singapore, 2022.
doi:10.1007/978-981-19-5944-8

31. Comay, E., "The physical meaning of gauge transformations in electrodynamics,", E-print arXiv:physics/0611148 [physics.gen-ph], Nov. 2006.        Google Scholar

32. Konopinski, E. J., "Electromagnetic Fields and Relativistic Particles," McGraw-Hill, New York, 1981.        Google Scholar

33. Konopinski, E. J., "What the electromagnetic vector potential describes," Am. J. Phys., Vol. 46, 499-502, 1978.
doi:10.1119/1.11298        Google Scholar

34. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd Edition, Pergamon, Oxford, 1977.

35. Schwinger, J., L. L. DeRaad, Jr., K. A. Milton, and W. Tsai, Classical Electrodynamics, Perseus books, Reading, Massachusetts, 1998.

36. Sharma, N. L., "Field versus action-at-a-distance in a static situation," Am. J. Phys., Vol. 56, 420-423, 1988.
doi:10.1119/1.15592        Google Scholar

37. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Mainly Electromagnetism and Matter, Addison-Wesley, Reading, Massachusetts, de nitive Edition, 2006.

38. McGregor, S., R. Hotovy, A. Caprez, and H. Batelaan, "On the relation between the Feynman paradox and Aharonov-Bohm effects," New Journal of Physics, Vol. 14, 093020-1-22, 2012.
doi:10.1088/1367-2630/14/9/093020        Google Scholar

39. Stettner, R., "Conserved quantities and radiation effects for a closed system of charged particles," Ann. Phys. (N.Y.), Vol. 67, 238-251, 1971.
doi:10.1016/0003-4916(71)90011-X        Google Scholar

40. Kittel, C., Introduction to Solid State Physics, 7th Edition, John Wiley & Sons, New York, 1996.

41. Essen, H., "An exact formula for the electromagnetic momentum in terms of the charge density and the Coulomb gauge vector potential," Eur. J. Phys., Vol. 39, 025202-1-9, 2018.        Google Scholar

42. Redinz, J. A., "Magnetic energy in quasistatic systems," Eur. J. Phys., Vol. 44, 015202-1-14, 2023.
doi:10.1088/1361-6404/ac9ba5        Google Scholar

43. Singal, A. K., "Wherein lies the momentum in Aharonov-Bohm quantum interference experiment --- A classical physics perspective,", E-print arXiv: arXiv:2301.06502 [quant-ph], Jan. 2023.        Google Scholar

44. Primakoff, H. and T. Holstein, "Many-body interactions in atomic and nuclear systems," Phys. Rev., Vol. 55, 1218-1234, 1939.
doi:10.1103/PhysRev.55.1218        Google Scholar

45. Page, L. and N. I. Adams, Electrodynamics, Van Nostrand, New York, 1940.

46. Podolsky, B. and K. S. Kunz, Fundamentals of Electrodynamics, Marcel Dekker, New York, 1969.

47. Boyer, T. H., "Concerning classical forces, energies, and potentials for accelerated point charges," Am. J. Phys., Vol. 91, 74-78, 2023.
doi:10.1119/5.0094457        Google Scholar

48. Griffiths, D. J., Introduction to Electrodynamics, 3rd Edition, Prentice Hall, New Jersey, 1999.