Vol. 104
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-11-24
BI-CMOS Design of a*exp (-j *φ0) Phase Shifter as Miniature Microwave Passive Circuit Using Bandpass NGD Resonant Circuit
By
Progress In Electromagnetics Research B, Vol. 104, 1-19, 2024
Abstract
The purpose of this paper is to study the RF/microwave constant phase shift (CPS) designed as an integrated circuit (IC) in 130-nm Bi-CMOS technology. The CPS understudy is constituted by a bandpass (BP) negative group delay (NGD) passive cell combined in cascade with a positive group delay (PGD) circuit. The CPS real circuit is represented by a CLC-network associated in cascade with a BP-NGD passive cell. The CPS characterization is based on the S-parameter modelling. The CPS is analytically modeled by the frequency independent transmission phase modelling by the mathematical relation φ(f)=a*exp(-j0) = constant around working frequency [fnf/2, fnf/2] by denoting center frequency fn and frequency band Δf. The analytical principle of the constant PS is explored by means of the RLC-network based NGD cell. The design formula of the NGD and CLC passive circuit parameters in function of desired operation frequency is established. The validity of the developed theory is verified with a proof-of-concept (POC). A CPS miniature IC having physical size 1.15 mm × 0.7 mm is designed and implemented as POC in 130-nm Bi-CMOS technology. The ADS® and layout versus schematic of Cadence® simulation results from 130-nm Bi-CMOS CPS POC confirms the theoretical investigation feasibility. The simulated results of the obtained CPS IC POC layout show φ0=-67°+/-1° phase shift around fn=0.85 GHz within the frequency band delimited by f1=0.73 GHz to f2=0.984 GHz or Δf=f2-f1=254 GHz. The CPS robustness designed in 130-nm Bi-CMOS IC technology is stated by Monte Carlo statistical analysis from 1000 trials with respect to the component geometrical parameters. It was reported that the phase shift and insertion loss flatness's of the CPS IC is guaranteed lower than 5% in Δf/fn=30% relative frequency band around fn.
Citation
Mathieu Guerin, Fayrouz Haddad, Wenceslas Rahajandraibe, Samuel Ngoho, Glauco Fontgalland, Fayu Wan, and Blaise Ravelo, "BI-CMOS Design of a*exp (-j *φ0) Phase Shifter as Miniature Microwave Passive Circuit Using Bandpass NGD Resonant Circuit," Progress In Electromagnetics Research B, Vol. 104, 1-19, 2024.
doi:10.2528/PIERB23060902
References

1. Meng, T. H., B. McFarland, D. Su, and J. Thomson, "Design and implementation of an all-CMOS 802.11a wireless LAN chipset," IEEE Commun. Mag., Vol. 41, No. 8, 160–168, Aug. 2003.
doi:10.1109/MCOM.2003.1222734

2. Fletcher, B., "ATIS Next G Alliance paves 6G roadmap," https://www.fiercewireless.com/tech/atis-next-g-alliance-paves-6g-roadmap, Jan. 2023.

3. Dahad, N., "6G: Roadmap, challenges and opportunities," https://www.eetimes.eu/6g-roadmap-challenges-and-opportunities/, Jan. 2023.

4. Letaief, K. B., W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The roadmap to 6G — AI empowered wireless networks," https://doi.org/10.48550/arXiv.1904.11686, Jan. 2023.

5. Yaklaf, S. K. A., K. S. Tarmissi, and N. A. A. Shashoa, "6G mobile communications systems: Requirements, specifications, challenges, applications, and technologies," 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 679–683, 2021.

6. Mozaffari, M., W. Saad, M. Bennis, and M. Debbah, "Communications and control for wireless drone-based antenna array," IEEE Transactions on Communications, Vol. 67, No. 1, 820–834, Jan. 2019.
doi:10.1109/TCOMM.2018.2871453

7. Hakkarainen, A., J. Werner, K. R. Dandekar, and M. Valkama, "Widely-linear beamforming and RF impairment suppression in massive antenna arrays," Journal of Communications and Networks, Vol. 15, No. 4, 383–397, Aug. 2013.
doi:10.1109/JCN.2013.000069

8. Yan, S.-H. and T.-H. Chu, "A beam-steering and-switching antenna array using a coupled phase-locked loop array," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 638–644, Mar. 2009.
doi:10.1109/TAP.2009.2013421

9. Kallnichev, V., "Analysis of beam-steering and directive characteristics of adaptive antenna arrays for mobile communications," IEEE Antennas and Propagation Magazine, Vol. 43, No. 3, 145–152, Jun. 2001.
doi:10.1109/74.934915

10. Zhang, J., S. Zhang, Z. Ying, A. S. Morris, and G. F. Pedersen, "Radiation-pattern reconfigurable phased array with p-i-n diodes controlled for 5G mobile terminals," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 3, 1103–1117, Mar. 2020.

11. Li, Y., M. F. Iskander, and Z. Zhang Z. Feng, "A new low cost leaky wave coplanar waveguide continuous transverse stub antenna array using metamaterial-based phase shifters for beam steering," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 2619–2625, Jul. 2013.
doi:10.1109/TAP.2013.2257649

12. Oh, S. S. and L. Shafai, "Compensated circuit with characteristics of lossless double negative materials and its application to array antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 29–38, 2007.
doi:10.1049/iet-map:20050229

13. Alomar, W. and A. Mortazawi, "Method of generating negative group delay in phase arrays without using lossy circuits," Proc. IEEE IWS 2013, 1–4, Apr. 2013.

14. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1997–2010, May 2015.
doi:10.1109/TAP.2015.2408364

15. Zhu, M. and C.-T. M. Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," Proc. 2019 49th EuMC, 256–259, Oct. 2019.

16. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 3, 601–611, Mar. 1995.
doi:10.1109/22.372106

17. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of oscillators, filters and communication systems," Electron. Lett., Vol. 36, No. 23, 1931–1933, Nov. 2000.
doi:10.1049/el:20001377

18. Ahn, K.-P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2139–2147, Sep. 2009.

19. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336–43343, Feb. 2020.

20. Zhang, T., C.-T. M. Wu, and R. Xu, "High Q series negative capacitor using negative group delay circuit based on a stepped-impedance distributed amplifier," IEICE Electron. Exp., Vol. 14, No. 7, 2017.
doi:10.1587/elex.14.20170088

21. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative-group-delay networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4322–4332, Dec. 2013.
doi:10.1109/TMTT.2013.2281967

22. Au, N. and C. Seo, "Novel design of a 2.1–2.9 GHz negative capacitance using a passive non-Foster circuit," IEICE Electron. Exp., Vol. 14, No. 1, 1–6, 2017.
doi:10.1587/elex.13.20160955

23. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16–32, Feb. 2021.
doi:10.1109/MMM.2020.3035862

24. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," Int. J. Electron. Commun., Vol. 68, No. 4, 282–290, Apr. 2014.
doi:10.1016/j.aeue.2013.09.003

25. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "Broadband phase shifter with constant phase based on negative group delay circuit," Progress In Electromagnetics Research Letters, Vol. 103, 161–169, 2022.

26. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187–203, 2021.

27. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493–1508, 2022.

28. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "A tri-band negative group delay circuit for multiband wireless applications," Progress In Electromagnetics Research C, Vol. 108, 159–169, 2021.

29. Segard, B. and B. Macke, "Observation of negative velocity pulse propagation," Phys. Lett. A, Vol. 109, 213–216, May 1985.

30. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, Vol. 23, No. 1, 125–141, Apr. 2003.

31. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33–47, 2009.

32. Barroso, J. J., J. E. B. Oliveira, O. L. Coutinho, and U. C. Hasar, "Negative group velocity in resistive lossy left-handed transmission lines," IET Microw. Antennas Propag., Vol. 10, No. 7, 808–815, May 2016.

33. Kayano, Y. and H. Inoue, "Embedded F-SIR type transmission line with open-stub for negative group delay characteristic," IEICE Trans. Electron., Vol. 99, No. 9, 1023–1026, 2016.

34. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 7, 639–641, Jul. 2017.
doi:10.1109/LMWC.2017.2711572

35. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 290–292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254

36. Choi, H., Y. Jeong, J. Lim, S.-Y. Eom, and Y.-B. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 1, 19–21, Jan. 2011.
doi:10.1109/LMWC.2010.2089675

37. Zhou, X., B. Li, N. Li, B. Ravelo, X. Hu, Q. Ji, et al. "Analytical design of dual-band negative group delay circuit with multi-coupled lines," IEEE Access, Vol. 8, 72749–72756, 2020.

38. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 8, 521–523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445

39. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476–478, Mar. 2017.
doi:10.1049/el.2017.0328

40. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836–22843, 2017.

41. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070–1076, Dec. 2018.
doi:10.13164/re.2018.1070

42. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016–1032, Oct. 2014.
doi:10.1002/cta.1902

43. Dickson, T. O., M. A. LaCroix, S. Boret, D. Gloria, R. Beerkens, and S. P. Voinigescu, "30-100-GHz inductors and transformers for millimeter-wave (Bi) CMOS integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 123–133, Jan. 2005.
doi:10.1109/TMTT.2004.839329

44. Ravelo, B., M. Guerin, J. Frnda, F. E. Sahoa, G. Fontgalland, H. S. Silva, S. Ngoho, F. Haddad, and W. Rahajandraibe, "Design method of constant phase-shifter microwave passive integrated circuit in 130-nm BiCMOS technology with bandpass-type negative group delay," IEEE Access, Vol. 10, No. 1, 93084–93103, Aug. 2022.

45. Vemagiri, J., A. Chamarti, M. Agarwal, and K. Varahramyan, "Transmission line delay-based radio frequency identification (RFID) tag," Microw. Opt. Technol. Lett., Vol. 49, No. 8, 1900–1904, Aug. 2007.
doi:10.1002/mop.22599

46. Vauche, R., S. Bourdel, N. Dehaese, J. Gaubert, O. Ramos Sparrow, E. Muhr, et al. "High efficiency UWB pulse generator for ultra-low-power applications," Int. J. Microw. Wireless Technol., Vol. 8, No. 3, 495–503, May 2016.
doi:10.1017/S1759078715000355

47. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 1116–1125, May 2010.

48. Macke, B., B. Segard, and F. Wielonsky, "Optimal superluminal systems," Physical Review E, Vol. 72, No. 3, 035601, Sept. 2005.
doi:10.1103/PhysRevE.72.035601

49. Kandic, M. and G. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1–18, Sept. 2021.