College of Electronics and Information Engineering
Nanjing University of Information Science and Technology
China
Homepage1. Meng, T. H., B. McFarland, D. Su, and J. Thomson, "Design and implementation of an all-CMOS 802.11a wireless LAN chipset," IEEE Commun. Mag., Vol. 41, No. 8, 160–168, Aug. 2003.
doi:10.1109/MCOM.2003.1222734 Google Scholar
2. Fletcher, B., "ATIS Next G Alliance paves 6G roadmap," https://www.fiercewireless.com/tech/atis-next-g-alliance-paves-6g-roadmap, Jan. 2023.
3. Dahad, N., "6G: Roadmap, challenges and opportunities," https://www.eetimes.eu/6g-roadmap-challenges-and-opportunities/, Jan. 2023.
4. Letaief, K. B., W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The roadmap to 6G — AI empowered wireless networks," https://doi.org/10.48550/arXiv.1904.11686, Jan. 2023.
5. Yaklaf, S. K. A., K. S. Tarmissi, and N. A. A. Shashoa, "6G mobile communications systems: Requirements, specifications, challenges, applications, and technologies," 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 679–683, 2021.
6. Mozaffari, M., W. Saad, M. Bennis, and M. Debbah, "Communications and control for wireless drone-based antenna array," IEEE Transactions on Communications, Vol. 67, No. 1, 820–834, Jan. 2019.
doi:10.1109/TCOMM.2018.2871453 Google Scholar
7. Hakkarainen, A., J. Werner, K. R. Dandekar, and M. Valkama, "Widely-linear beamforming and RF impairment suppression in massive antenna arrays," Journal of Communications and Networks, Vol. 15, No. 4, 383–397, Aug. 2013.
doi:10.1109/JCN.2013.000069 Google Scholar
8. Yan, S.-H. and T.-H. Chu, "A beam-steering and-switching antenna array using a coupled phase-locked loop array," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 638–644, Mar. 2009.
doi:10.1109/TAP.2009.2013421 Google Scholar
9. Kallnichev, V., "Analysis of beam-steering and directive characteristics of adaptive antenna arrays for mobile communications," IEEE Antennas and Propagation Magazine, Vol. 43, No. 3, 145–152, Jun. 2001.
doi:10.1109/74.934915 Google Scholar
10. Zhang, J., S. Zhang, Z. Ying, A. S. Morris, and G. F. Pedersen, "Radiation-pattern reconfigurable phased array with p-i-n diodes controlled for 5G mobile terminals," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 3, 1103–1117, Mar. 2020. Google Scholar
11. Li, Y., M. F. Iskander, and Z. Zhang Z. Feng, "A new low cost leaky wave coplanar waveguide continuous transverse stub antenna array using metamaterial-based phase shifters for beam steering," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 2619–2625, Jul. 2013.
doi:10.1109/TAP.2013.2257649 Google Scholar
12. Oh, S. S. and L. Shafai, "Compensated circuit with characteristics of lossless double negative materials and its application to array antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 29–38, 2007.
doi:10.1049/iet-map:20050229 Google Scholar
13. Alomar, W. and A. Mortazawi, "Method of generating negative group delay in phase arrays without using lossy circuits," Proc. IEEE IWS 2013, 1–4, Apr. 2013. Google Scholar
14. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1997–2010, May 2015.
doi:10.1109/TAP.2015.2408364 Google Scholar
15. Zhu, M. and C.-T. M. Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," Proc. 2019 49th EuMC, 256–259, Oct. 2019. Google Scholar
16. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 3, 601–611, Mar. 1995.
doi:10.1109/22.372106 Google Scholar
17. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of oscillators, filters and communication systems," Electron. Lett., Vol. 36, No. 23, 1931–1933, Nov. 2000.
doi:10.1049/el:20001377 Google Scholar
18. Ahn, K.-P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2139–2147, Sep. 2009. Google Scholar
19. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336–43343, Feb. 2020. Google Scholar
20. Zhang, T., C.-T. M. Wu, and R. Xu, "High Q series negative capacitor using negative group delay circuit based on a stepped-impedance distributed amplifier," IEICE Electron. Exp., Vol. 14, No. 7, 2017.
doi:10.1587/elex.14.20170088 Google Scholar
21. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative-group-delay networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4322–4332, Dec. 2013.
doi:10.1109/TMTT.2013.2281967 Google Scholar
22. Au, N. and C. Seo, "Novel design of a 2.1–2.9 GHz negative capacitance using a passive non-Foster circuit," IEICE Electron. Exp., Vol. 14, No. 1, 1–6, 2017.
doi:10.1587/elex.13.20160955 Google Scholar
23. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16–32, Feb. 2021.
doi:10.1109/MMM.2020.3035862 Google Scholar
24. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," Int. J. Electron. Commun., Vol. 68, No. 4, 282–290, Apr. 2014.
doi:10.1016/j.aeue.2013.09.003 Google Scholar
25. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "Broadband phase shifter with constant phase based on negative group delay circuit," Progress In Electromagnetics Research Letters, Vol. 103, 161–169, 2022. Google Scholar
26. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187–203, 2021. Google Scholar
27. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493–1508, 2022. Google Scholar
28. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "A tri-band negative group delay circuit for multiband wireless applications," Progress In Electromagnetics Research C, Vol. 108, 159–169, 2021. Google Scholar
29. Segard, B. and B. Macke, "Observation of negative velocity pulse propagation," Phys. Lett. A, Vol. 109, 213–216, May 1985. Google Scholar
30. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, Vol. 23, No. 1, 125–141, Apr. 2003. Google Scholar
31. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33–47, 2009. Google Scholar
32. Barroso, J. J., J. E. B. Oliveira, O. L. Coutinho, and U. C. Hasar, "Negative group velocity in resistive lossy left-handed transmission lines," IET Microw. Antennas Propag., Vol. 10, No. 7, 808–815, May 2016. Google Scholar
33. Kayano, Y. and H. Inoue, "Embedded F-SIR type transmission line with open-stub for negative group delay characteristic," IEICE Trans. Electron., Vol. 99, No. 9, 1023–1026, 2016. Google Scholar
34. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 7, 639–641, Jul. 2017.
doi:10.1109/LMWC.2017.2711572 Google Scholar
35. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 290–292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254 Google Scholar
36. Choi, H., Y. Jeong, J. Lim, S.-Y. Eom, and Y.-B. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 1, 19–21, Jan. 2011.
doi:10.1109/LMWC.2010.2089675 Google Scholar
37. Zhou, X., B. Li, N. Li, B. Ravelo, X. Hu, Q. Ji, et al. "Analytical design of dual-band negative group delay circuit with multi-coupled lines," IEEE Access, Vol. 8, 72749–72756, 2020. Google Scholar
38. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 8, 521–523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445 Google Scholar
39. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476–478, Mar. 2017.
doi:10.1049/el.2017.0328 Google Scholar
40. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836–22843, 2017. Google Scholar
41. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070–1076, Dec. 2018.
doi:10.13164/re.2018.1070 Google Scholar
42. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016–1032, Oct. 2014.
doi:10.1002/cta.1902 Google Scholar
43. Dickson, T. O., M. A. LaCroix, S. Boret, D. Gloria, R. Beerkens, and S. P. Voinigescu, "30-100-GHz inductors and transformers for millimeter-wave (Bi) CMOS integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 123–133, Jan. 2005.
doi:10.1109/TMTT.2004.839329 Google Scholar
44. Ravelo, B., M. Guerin, J. Frnda, F. E. Sahoa, G. Fontgalland, H. S. Silva, S. Ngoho, F. Haddad, and W. Rahajandraibe, "Design method of constant phase-shifter microwave passive integrated circuit in 130-nm BiCMOS technology with bandpass-type negative group delay," IEEE Access, Vol. 10, No. 1, 93084–93103, Aug. 2022. Google Scholar
45. Vemagiri, J., A. Chamarti, M. Agarwal, and K. Varahramyan, "Transmission line delay-based radio frequency identification (RFID) tag," Microw. Opt. Technol. Lett., Vol. 49, No. 8, 1900–1904, Aug. 2007.
doi:10.1002/mop.22599 Google Scholar
46. Vauche, R., S. Bourdel, N. Dehaese, J. Gaubert, O. Ramos Sparrow, E. Muhr, et al. "High efficiency UWB pulse generator for ultra-low-power applications," Int. J. Microw. Wireless Technol., Vol. 8, No. 3, 495–503, May 2016.
doi:10.1017/S1759078715000355 Google Scholar
47. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 1116–1125, May 2010. Google Scholar
48. Macke, B., B. Segard, and F. Wielonsky, "Optimal superluminal systems," Physical Review E, Vol. 72, No. 3, 035601, Sept. 2005.
doi:10.1103/PhysRevE.72.035601 Google Scholar
49. Kandic, M. and G. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1–18, Sept. 2021. Google Scholar