Search Results(13733)

2023-10-30
PIER C
Vol. 138, 191-203
Infrared Image Segmentation Method Based on DeepLabV3+ for Identifying Key Components of Power Transmission Line
Donglei Weng , Shuliang Dou , Haozhe Wang , Dawei Gong , Qun Wang and Sailing He
To improve the work efficiency of on-site inspection personnel in diagnosing faults of power transmission lines, in this paper we propose an infrared image segmentation method based on DeepLabV3+ for identifying key components of transmission line. We collected 556 infrared images of transmission lines in our own power supply system, and expanded the original data by data augmentation method. Based on the comparison of the DeepLabV3+ model with three different backbone networks, MobileNetV2 with the best performance is selected as the main backbone network. Compared with FCN, U-Net and SegNet, the test results show that DeepLabV3+ using MobileNetV2 (compared with ResNet50 and Xception) can segment the five types of key components in power transmission lines from infrared images more accurately and faster. The MIoU on the test set is 0.8624, which is better than the performance of FCN, U-Net and SegNet. This lays a foundation for improving the work efficiency of on-site inspection personnel and improving the continuous power supply capacity, stability and safe operation level of the power grid.
2023-10-29
PIER M
Vol. 120, 113-122
Design of a Hollow Dielectric Loading for Wideband Gain Enhancement of a Horn Antenna
Al-Moatasem Al-Hinaai , Anthony N. Caruso , Roy C. Allen and Kalyan C. Durbhakula
The far-field gain of commercial horn antennas primarily depends on aperture area and flare length. Traditionally, for every dBi of gain increment, the flare length should increase by 20% and the aperture area by 10%. External lens classes, such as gradient refractive index, concave, or Fresnel, are used to improve gain by ≤ 2 dBi, but at the cost of a volumetric increase by 75% in the range of 4.8-6 GHz. We propose a hollow dielectric loading (HDL) loaded in the flare section of the horn antenna. The shape and position of the HDL are optimized using an evolutionary algorithm to obtain the maximum gain from a conical corrugated horn antenna (CCHA) at boresight. The optimized design yielded a total volume 84% smaller than traditional external lenses while achieving 3.5 dBi peak gain improvement in the operating frequency range. We also observed an improvement in the electric field by 24% while retaining parity in the impedance bandwidth. A 3D-printed prototype of the optimized CCHA and the HDL is fabricated and measured. The measured and simulated results demonstrated good agreement with a maximum difference of 4%.
2023-10-29
PIER B
Vol. 103, 55-73
Multi-Attribute Synergetic Decision-Making Algorithm for 5G Integrated Heterogeneous Wireless Network
Xiaoxin Wu , Chenwei Feng , Yaxi Yang and Silei Li
The next-generation communication network will be primarily based on the 5G networks, with multiple wireless Radio Access Technologies (RATs) coexisting. The factors influencing user experience are complex and diverse, making it difficult for any single wireless technology to meet all user needs. Most existing network selection algorithms focus on either the user side or the network side, leading to the problem of network load imbalance. Therefore, this paper proposes a Multi-Attribute Synergetic Decision (MASD) algorithm for 5G integrated heterogeneous wireless network. First, implement the pre-filtering of the candidate network set. Taking into account the diversity of user services, this algorithm focuses on Quality of Service (QoS), user preferences, and network load. Analytic Hierarchy Process (AHP) and Standard Deviation (SD) are used to calculate the weights of each attribute. Based on the synergetic theory, the entropy value of the candidate network system is obtained. Simulation results demonstrate that this algorithm effectively coordinates various factors to select the most suitable network for access. It reduces unnecessary handovers, avoids the ping-pong effect, and achieves load balancing to a certain extent.
2023-10-27
PIER Letters
Vol. 113, 25-34
Compact Broadband Dual-Polarized Antenna with Parasitic Patches
Sensen Han , Feng Shang and Xinwei Wang
In this paper, a broadband compact dual-polarized antenna for base stations is proposed. This antenna consists of a pair of crossed dipoles, four triangular parasitic patches, four metal posts and a box reflector. The crossed dipoles are fed by two 50 Ω coaxial cables. The increase of four parasitic patches allows the resonant point to be generated at high frequencies to further widen the impedance bandwidth; the size of the parasitic patches is reduced to realize the reduction of the antenna radiator size; and the impedance matching is improved by cutting circular slots in the dipole arms. The measured results show that the proposed antenna is able to achieve a wide impedance bandwidth of 79% (1.67 to 3.87 GHz) with VSWR less than 1.6. A stable gain of 8-8.7 dBi and a half-power beamwidth (HPBW) of 60-78° are obtained at 2.2-3.65 GHz. In addition, the antenna radiator is very compact in size, only about 0.41λL × 0.41λL × 0.17λL, where λL is the longest operating wavelength.
2023-10-26
PIER C
Vol. 138, 175-189
A Novel Design Method for Unequal Coupled Line Dual-Band Wilkinson Power Divider
Puria Salimi , Mohsen Katebi Jahromi and Alireza Khoddam Astaneh Hossein
In this article, a new design approach for an unequal coupled transmission line dual-band Wilkinson power divider is presented. A parallel short or open circuit stub is considered at the input port for dual frequency response, and two resistors are connected in order to isolate the outputs. The method is based on an even-odd mode procedure. The main objective of this paper is to fabricate a dual band Wilkinson power divider in order to achieve higher dividing ratio, simple structure, and easier fabrication. First, the desired power divider is divided to two parts known as even and odd mode equivalent circuits. Then by analyzing the circuits, the characteristic impedances are calculated. Next, the coupled transmission lines dimensions are extracted. Afterward by using the calculated characteristic impedances, an error function is formulated, and by minimizing, the isolating resistors are obtained. To clarify the applicability of this method, several microstrip power dividers which operate at both 1 GHz and 2.3 GHz with dividing ratio equal to 1.2589 are designed and simulated with the assumption that relative permittivity is equal to 2.56. In order to demonstration the advantage of using coupled lines tow dividers, one by separated-lines and the other one by coupled-lines are designed and compared with each other. The results illustrate that while the coupled-line dividers have simpler structure, they have significantly similar frequency operation to separated-line ones. Then the designed structure fabricated on an FR4 substrate and S parameters are measured. The results show excellent agreement with simulation.
2023-10-26
PIER M
Vol. 120, 95-111
Wearable Dual-Band Frequency Reconfigurable Patch Antenna for WBAN Applications
Umar Musa , Shaharil Mohd Shah , Huda Bin Abdul Majid , Mohamad Kamal Abd Rahim , Muhammad Sani Yahya , Zainab Yunusa , Abubakar Salisu and Zuhairiah Zainal Abidin
A wearable dual-band patch antenna is presented, which can adjust its frequency for WBAN applications. Frequency reconfiguration is achieved by the antenna through the utilization of the switching properties of a PIN diode. Produced using a Rogers Duroid material with semi-flexible properties, the antenna has a size of 0.33λ0 × 0.35λ0 × 0.012λ0. Initially resonating at 5.8 GHz, a slot in the shape of an inverted letter U is included to introduce a dual-band operation at 2.4 GHz. By controlling the PIN diode's ON and OFF states, the antenna can switch between single-band (ISM 5.8 GHz) and dual-band (ISM 2.4 GHz and 5.8 GHz) operations. The antenna exhibits a bi-directional radiation pattern at 2.4 GHz and a directional pattern at 5.8 GHz. In the ON state, the antenna achieves a peak gain and total efficiency of 4.84 dBi, 5.87 dBi, 92.5%, and 92.7% at 2.4 GHz and 5.8 GHz, respectively. In the OFF state at 5.8 GHz, a peak gain and total efficiency of 6.01 dBi and 91.8% are measured. To evaluate its suitability for WBAN applications, the antenna's performance is assessed by measuring SAR values on a human tissue model. At 2.4 GHz, the SAR values for 1/10 g of human tissue are 0.411/0.177 W/kg respectively. Similarly, at 5.8 GHz, the SAR values are 0.438/0.158 W/kg respectively. The SAR values comply with the established standards of the FCC and ICNIRP for both resonance frequencies for human tissue weighing 1/10 g. Overall, the antenna boasts a compact size, acceptable SAR values, and satisfactory gain and efficiency across all operating bands, surpassing previous works. It also benefits from a simplified design employing a single switch, and the antenna remains a suitable choice for WBAN applications considering its other advantageous characteristics mentioned above.
2023-10-25
PIER M
Vol. 120, 83-94
High-Eccentricity Orbit Synthetic Aperture Radar with Multi-Parameters Joint Agile Variation
Xuhang Lu , Wei Xu , Pingping Huang , Weixian Tan and Yaolong Qi
The variable orbit altitude and platform velocity in high-eccentricity orbit synthetic aperture radar (HEO SAR) increase the difficulty in obtaining effective radar echoes. In this letter, a new stripmap imaging mode with multi-parameter joint agile variation in HEO-SAR is proposed. First, the range side-looking angle is adjusted during the whole raw data acquisition interval according to the time-varying side-looking geometric relationship, while the pulse repetition frequency (PRF) is continuously changed to obtain uniform azimuth sampling due to the satellite velocity variation. Besides simultaneously adjusting the side-looking angle and the operated PRF, echo sampling start time and range sampling points are also continuously changed to decrease the echo data rate. According to the echo characteristics in HEO SAR, its corresponding imaging algorithm is presented, which includes range samples adjustment, azimuth resampling, cubic filtering, nonuniform Fourier fast transform (NUFFT) for nonlinear range cell migration correction (RCMC) and modified azimuth compression. A system design example with multi-parameters joint agile variation for the desired resolution of 3 m and the swath width of 30 km is given, while an imaging simulation experiments on point targets are carried out. Both simulation results of multi-parameters variation design and point targets imaging validate the proposed stripmap imaging mode with multi-parameters joint agile variation in HEO SAR.
2023-10-25
PIER M
Vol. 120, 69-82
Multi-Objective Optimal Design of Single-Phase Line-Starting Permanent Magnet Synchronous Motor Based on Response Surface Method
Shixiong Yin and Aiyuan Wang
Single-phase asynchronous motors have an irreplaceable role in small production fields such as household appliances and office equipment. However, due to the existence of small single-phase asynchronous motors with low power factor, low efficiency, vibration and noise, and other problems, the performance of a single-phase asynchronous motor, including efficiency, power factor, and vibration noise has been unable to meet the increasing needs of people. In this paper, a single-phase line-starting permanent magnet synchronous motor (SPLSPMSM) for air compressor is designed with the core size of Y series three-phase asynchronous motor for reference. The operating capacitance, the number of turns of the main stator winding, the turns ratio of the main and auxiliary windings, and the permanent magnet size are selected as optimization variables, and the efficiency, power factor, and starting torque are the optimization objectives. A regression model was developed by the response surface method (RSM) to optimize the performance of the motor, and the reliability of the response surface experiment was verified. The results show that the performance of the optimized motor is improved in terms of rated operation and starting performance.
2023-10-23
PIER C
Vol. 138, 161-174
Compact Reconfigurable Patch Antenna for Wirelesss Applications
Prathipati Rakesh Kumar , Pamarthi Sunitha and Makkapati Venkata Prasad
A novel miniatured reconfigurable antenna for wireless applicationsusing defective ground structure is proposed and studied. This proposed antenna generates eight different frequencies, operating at 2 GHz (IMT), 2.3 GHz (UMTS), 2.5 GHz (Wi-Fi), 2.7 GHz (Radio astronomy), 2.9 GHz (Weather radar), 4.2 GHz (Radio altimeter), 4.4 GHz (Radio determination) and 5.5 GHz (Wi-MAX) while maintaining overall compact size of 24×33×1.6 mm3 using an FR-4 substrate having a permittivity of εr = 4.4. The proposed reconfigurable antenna consists of three switches in the slots of the patch along with rectangular defects on ground surface and a microstrip feed line. The lumped elements are used in place of three switches in the simulation to get tunable capacitance, which is responsible for frequency reconfigurability. It makes the antenna operate at eight useful bands. The structure shows the impedance bandwidths of 6.86%, 6.04%, 2.51%, and 2.73% with gains 5 dB, 4.8 dB, 6 dB, and 6.8 dB, respectively. The designed antenna can be easily integrated on the modern communication devices. A prototype of the designed antenna is fabricated, and simulation results are compared with measured values using PIN diode switches.
2023-10-22
PIER C
Vol. 138, 145-159
Three-Dimensional Imaging Method of Target Based on Time-Domain Sparse Representation of Multi-View SAR Data
Jinrong Zhong , Shengqi Liu and Xing Zhang
Three-dimension (3-D) images provide additional information of targets for automatic target recognition (ATR) and 3D scattering model generation. Methods based on sparse representations can reconstruct extreme resolution 3D images from sparse measurements, but suffer from the huge dimension of separable dictionaries. This paper presents a time-domain sparse representation method for 3-D target imaging from multi-view synthetic aperture radar (SAR) data, including a basic method and two improved ones. The time-domain framework uses time-domain responses to build a separable dictionary and a sparse representation model. In the time-domain framework, the basic approach is to transform the dictionary into a rather sparse matrix via a low-energy threshold that shrinks the spatial region of the 3D imaging based on multi-aspect 2D images. By exploiting the properties of multi-aspect SAR data in the time domain, one modification makes the sparse representation model more compact, leading to a reduction in dimension, and another additional modification splits a high-dimensional large-scale model into a set of very low-dimensional small-scale models. They overcome the curse of dimensionality and improve the efficiency of sparse representation-based 3D imaging to varying degrees. Experimental results show the effectiveness and great efficiency of the proposed method.
2023-10-22
PIER M
Vol. 120, 55-67
A Novel Passive Millimeter Wave Image Noise Suppression Method Based on Pixel Non-Local Self-Similarity
Jin Yang and Yuehua Li
To solve the problem of mixed noise in a passive millimeter-wave (PMMW) imaging system that affects object detection, recognition, and classification, this paper proposes a blind denoising algorithm based on pixel non-local self-similarity (PNSS) prior to PMMW images. Firstly, an adaptive filtering algorithm is introduced, utilizing PNSS prior to estimating the noise intensity and improving the problem of noise residual caused by parameter uncertainty in traditional filtering processes. Secondly, a three-level joint denoising algorithm is developed, accompanied by an iterative regression algorithm to effectively filter the mixed noise in PMMW images while preserving image contours. Finally, the effectiveness of the proposed method is demonstrated through a comparison with patch similarity-based prior denoising methods and high-dimensional mixed noise denoising methods. Experimental results substantiate that the proposed PNSS blind denoising method successfully suppresses mixed noise in PMMW images, enhances subjective visual perception, and presents a novel approach for denoising under various PMMW imaging mechanisms.
2023-10-21
PIER M
Vol. 120, 41-54
Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers
Chuan Zhang , Anqi Yang and Sailing He
Rapid and sensitive analysis of proteins in complex biological environments is crucial for the screening and defense against infectious diseases. Here, we show that the lateral flow immunoassay strip based on confocal Raman imaging can achieve immune analysis at pM and ~104 cfu/mL molecular level for the rapid detection of COVID-19 virus and bacteria. Fluorescent dyes of Alexa 647 were used as Raman markers in the Raman silent region of 1800 cm-1 and 2800 cm-1, and colloidal gold nanospheres were used to enhance the Raman signal. Raman imaging was performed with our self-developed confocal Raman microscopy for COVID-19 and Escherichia coli O157: H7 on lateral flow immunoassay strip. Compared to traditional colloidal gold test strips, the sensitivity of this technology has been significantly improved. This work will promote the widespread application of surface enhanced Raman detection for bacteria and virus, which is of great significance for in vitro screening and disease diagnosis.
2023-10-19
PIER Letters
Vol. 113, 17-24
High-Gain Pencil-Beam Microstrip Antenna Array for Radar Application
Meenal Job , Ram Suchit Yadav , Mohd Gulman Siddiqui , Vishant Gahlaut and Upendra Narayan Mishra
For long-range communication, the directivity and gain of a millimeter wave antenna should be high. The aim of the paper is to design an antenna array that works at higher frequencies X/Ku-band (8-12 GHz)/(12-18 GHz) respectively for applications such as RADAR. This can be achieved by an array of antennas as single antenna cannot provide such high gain and directivity. The radiation pattern has directional pencil beam in which the frequency and gain plot is shown at 11.32 GHz. The maximum gain of 29.0994 dB has been achieved at 11.32 GHz frequency. The software High Frequency Structure Simulator (HFSS) has been used for simulation, and the simulated and measured results are found in agreement with each other
2023-10-17
PIER C
Vol. 138, 131-144
A Conformal Wearable Antenna Based on Artificial Magnetic Conductor for GPS Applications
Shuqi Wang and Yuqin Shi
In order to improve the efficiency and safety of emergency rescue operations, a wearable circularly polarized (CP) antenna suitable for GPS applications has been designed. It adopts a coplanar waveguide (CPW) feed structure, where the ground plane and radiation patch form an annular gap. The impedance bandwidth and axial ratio performance are enhanced by adjusting the amplitude and phase difference of the current distribution through two pairs of notches and open-circuit branches. When the single antenna is more than 20 millimeters away from the human body model, its CP radiation performance is acceptable, and the peak Specific Absorption Rate (SAR) also meets the required standards. To minimize the separation distance between the antenna and the human body, a 2×2 Artificial Magnetic Conductor (AMC) with in-phase reflection characteristics is integrated at the antenna's bottom as a reflector, which increases the antenna gain and reduces the SAR. Simulation and test results indicate that in the GPS L1 frequency band, the antenna achieves a gain greater than 7 dBi, an axial ratio less than 2 dB, a front-to-back ratio of 24 dB, and a peak SAR of 0.53 W/Kg, which is well below the standard limit of 1.6 W/Kg set by the Federal Communications Commission (FCC). Compared with other relevant antennas, this antenna features compact size, wide impedance bandwidth, and robust anti-interference capability, effectively improving the flexibility and compatibility of the wearable antenna, thereby meeting the demand for efficient and reliable positioning of rescuers.
2023-10-16
PIER M
Vol. 120, 29-40
An Multilayer Metamaterial Inspired Antenna for in-Body and on-Body Application
Siddhant Goswami , Deepak C. Karia , Tapas Bhuiya and Vikalp Pratap Singh
In this research work, a flexible metamaterial inspired antenna is proposed. The substrate is made of polyamide making it bendable. The stepwise detail analysis is discussed, and the antenna has two complimentary split resonators with circular ring placed in the ground plane. A superstrate along with an EBG structure is added in the final design. Mathematical modelling is done to prove metamaterial structure. To test the on-body results, first the permittivity of different fabrics is measured using DSL-01 (SES Instruments Pvt. Ltd). Phantom solution is required to test In-Body (Implantable) results.
2023-10-14
PIER M
Vol. 120, 15-27
2-Port High Gain Millimeter-Wave MIMO Antenna for 5G Applications
Mingming Gao , Hongliang Niu , Jing Chang Nan , Wen Hui Liu and Chun Li Liu
In order to improve the distance of 5th Generation (5G) Mobile Communication Technology) millimeter-wave outdoor point-to-point relay transmission, a 2-port Multiple Input Multiple Output (MIMO) antenna with high gain and low sidelobe level characteristics is designed at 39 GHz. The antenna is designed using the Taylor synthesis method and slotting technology to increase the antenna gain and lower the sidelobe level. Loading hollow T-shaped branches reduces the mutual coupling between MIMO antennas. The measured results are basically in line with the simulation ones. The results show that the bandwidth of the antenna is 38.1 ~ 39.3 GHz; the isolation degree is more than 50 dB; the antenna gain is 25.75 dBi at 39 GHz; the E-plane and H-plane sidelobe levels are -20.5 dB and -20 dB, respectively. Furthermore, the Envelope Correlation Coefficient (ECC) is less than 0.022; the Diversity Gain (DG) is more than 9.89; and the radiation efficiency reaches 90% in the working frequency band. Therefore, this antenna can be used as a long-distance relay antenna in 5G millimeter-wave communication system with high gain and low sidelobe level characteristics based on meeting the requirements of the MIMO antenna.
2023-10-14
PIER M
Vol. 120, 1-14
Impact of Phase Noise on Sidelobe Cancellation System Utilizing Distributed Phase-Lock-Loops
Qing Wang , Kang Luo and Huanding Qin
Phase noise is a common hardware impairment that affects the performance of beamforming systems. Therefore, analysis of its impact is of great practical interest. Although Sidelobe Cancellation (SLC) is a mature technique, existing analyses typically ignore the effect of phase noise, due to the shared assumption that the down-conversion circuits have a common local-oscillator (LO). However, when distributed phase-lock-loops (PLLs) are used, the impact of phase noise cannot be neglected. Therefore, this paper derives new mathematical models of performances, including signal-to-interference-plus-noise ratio (SINR) and beamforming gain. Exact and approximated analytical models are obtained, respectively. In addition, we propose an average beam pattern formula to replace the traditional beam pattern formula, to improve the consistency between beam null depth and the beamforming gain. The theoretical findings are verified through signal-level simulations.
2023-10-14
PIER B
Vol. 103, 37-53
A Torque Ripple Suppression Strategy for Hysteresis Segmented PWM-DITC Permanent Magnet Assisted Switched Reluctance Motor
Chaozhi Huang , Lixiang Dai , Yuliang Wu and Yanwen Sun
In the traditional Direct Instantaneous Torque Control (DITC) strategy for permanent magnet assisted switched reluctance motors, the hysteresis control mode during the commutation phase and the single-phase on-period is not smooth, resulting in excessive synthetic torque ripple. In this paper, we analyzed this problem, combined with the principle of hysteresis segmentation control and pulse width modulation (PWM), and proposed a hysteresis segmented PWM-DITC strategy. By analyzing the torque error changes in each division area of the inductor, the torque error is adjusted by the internal hysteresis loop during the commutation period and the single-phase on-period, so that the hysteresis control is smoother, and the torque ripple is reduced. At the same time, the linear model of rotor angle and inductance is established; the PWM voltage modulation calculation formula at both ends of the winding is calculated and derived; the hysteresis output signal at the commutation time and the single-phase on-time is optimized to further suppress the torque ripple. Finally, through simulation and experimental demonstration, the proposed hysteresis loop segmented PWM-DITC strategy can overcome the problem of unsmooth hysteresis control mode and can effectively suppress torque ripple.
2023-10-10
PIER M
Vol. 119, 189-201
A Quad-Band Low Power High Sensitive RF to DC Converter Circuit for RF Energy Harvesting Applications
Pavan Mehta and Anveshkumar Nella
In recent years, Radio Frequency Energy Harvesting (RFEH) has matured into a trustworthy and consistent method of obtaining ambient energy. For this energy to be utilized, it must be collected as efficiently over a broad range of frequencies as possible. In this regard, this article introduces a quad-band low-power, highly sensitive Radio Frequency (RF) to Direct Current (DC) signal converter circuit that operates at 1.5 GHz, 2.45 GHz, 3.6 GHz, and 5.5 GHz bands. The converter circuit is realized through single and dual-band converter circuit studies. These circuits comprise an impedance matching circuit, a voltage-doubler rectifier, a DC-pass filter with a resistive load of 5 kΩ, and a DC-DC voltage booster (LTC3108). The proposed quad-band converter circuit without a voltage booster gives a DC output voltage of 118 mV, 81 mV, 56 mV, and 24 mV at the four operational frequencies on a low input power of -25 dBm, respectively. A DC voltage of 3.3 V is obtained when the converter circuit is connected to a voltage booster. Maximum conversion efficiency achieved is 48% from four tones on a power input of -10 dBm. Circuit design steps, matching conditions, and performance parameters are presented using the Advanced Design System (ADS) and LTspice simulation tools.
2023-10-08
PIER M
Vol. 119, 177-188
Mutual Coupling Reduction in UWB-MIMO Antenna Using Circular Slot EBG Structure
Raveendrababu Pakala and Dasari Ramakrishna
In this paper, a compact Ultra Wide Band (UWB) Multiple Input Multiple Output (MIMO) antenna using circular slots Electromagnetic Band Gap (EBG) structures operating in frequency band from 3.1 GHz to 10.6 GHz is presented. The size of this compact antenna is 26 × 33 mm2. In wireless communications, such as WLAN, 4G, and 5G, MIMO has become an essential element. However, the major limiting factor of MIMO systems is mutual coupling due to the smaller spacing between multiple antennas, which reduces spatial diversity, antenna gain and can also result in unwanted interference and cross-talk between antenna elements. To enhance antenna performance and reduce the mutual coupling, EBG structures are used. Incorporation of EBG structures in MIMO antenna eliminates surface wave propagation, which reduces the mutual coupling. In this work, the design of a dot notch shaped UWB-MIMO antenna with a circular slot EBG structure is proposed. Results presented here are simulated by using CST microwave software studio. From the results it can be observed that the proposed antenna has bandwidth of 3.1 GHz-10.6 GHz. It exhibits 6.72 dB peak gain and reduces the mutual coupling considerably, i.e., more than -28 dB.