Vol. 120
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-22
A Novel Passive Millimeter Wave Image Noise Suppression Method Based on Pixel Non-Local Self-Similarity
By
Progress In Electromagnetics Research M, Vol. 120, 55-67, 2023
Abstract
To solve the problem of mixed noise in a passive millimeter-wave (PMMW) imaging system that affects object detection, recognition, and classification, this paper proposes a blind denoising algorithm based on pixel non-local self-similarity (PNSS) prior to PMMW images. Firstly, an adaptive filtering algorithm is introduced, utilizing PNSS prior to estimating the noise intensity and improving the problem of noise residual caused by parameter uncertainty in traditional filtering processes. Secondly, a three-level joint denoising algorithm is developed, accompanied by an iterative regression algorithm to effectively filter the mixed noise in PMMW images while preserving image contours. Finally, the effectiveness of the proposed method is demonstrated through a comparison with patch similarity-based prior denoising methods and high-dimensional mixed noise denoising methods. Experimental results substantiate that the proposed PNSS blind denoising method successfully suppresses mixed noise in PMMW images, enhances subjective visual perception, and presents a novel approach for denoising under various PMMW imaging mechanisms.
Citation
Jin Yang, and Yuehua Li, "A Novel Passive Millimeter Wave Image Noise Suppression Method Based on Pixel Non-Local Self-Similarity," Progress In Electromagnetics Research M, Vol. 120, 55-67, 2023.
doi:10.2528/PIERM23090702
References

1. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

2. Zhu, S., Y. Li, J. Chen, and Y. Li, "Passive millimeter wave image denoising based on adaptive manifolds," Progress In Electromagnetics Research B, Vol. 57, 63-73, 2014.
doi:10.2528/PIERB13092608

3. Cheng, Y., Y. Wang, Y. Niu, H. Rutt, and Z. Zhao, "Physically based object contour edge display using adjustable linear polarization ratio for passive millimeter-wave security imaging," IEEE Transactions on Geoscience and Remote Sensing, 1-15, 2020.
doi:10.1080/15481603.2019.1650447

4. Peng, R., J. Chen, Z. Liu, and Z. Guo, "Millimeter wave image super resolution using multichannel depth convolution neural network," Progress In Electromagnetics Research M, Vol. 113, 225-235, 2022.
doi:10.2528/PIERM22070801

5. Yang, H., Z. Yang, A. Hu, C. Liu, T. J. Cui, and J. Miao, "Source-free domain adaptive detection of concealed objects in passive millimeter-wave images," IEEE Transactions on Instrumentation and Measurement, Vol. 72, No. 5005015, 1-15, 2023.

6. Fu, P., D. Zhu, F. Hu, Y. Xu, and H. Xia, "A near-field imaging algorithm based on angular spectrum theory for synthetic aperture interferometric radiometer," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3606-3616, 2022.
doi:10.1109/TMTT.2022.3175156

7. Sun, D., Y. Shi, and Y. Feng, "Blind deblurring and denoising via a learning deep CNN denoiser prior and an adaptive L0-regularised gradient prior for passive millimetre-wave images," IET Image Processing, Vol. 14, No. 17, 4774-4784, 2020.
doi:10.1049/iet-ipr.2020.1193

8. Sarkis, M., "Adaptive reconstruction of millimeter-wave radiometric images," IEEE Transactions on Image Processing, Vol. 21, No. 9, 4141-4151, 2012.
doi:10.1109/TIP.2012.2198219

9. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "Adaptive CLEAN algorithm for millimeter wave synthetic aperture imaging radiometer in near field," IET Image Processing, Vol. 9, No. 3, 218-225, 2015.
doi:10.1049/iet-ipr.2014.0443

10. Zhao, Y., W. Si, A. Hu, and J. Miao, "A real-time calibration method of visibility function for passive millimeter wave imaging," IEEE International Conference on Microwave and Millimeter Wave Technology, 2020.

11. Li, Y. and Y. Li, "Passive millimeter-wave image denoising based on improved algorithm of non-local mean," International Journal of Advancements in Computing Technology, Vol. 4, No. 10, 158-164, 2012.
doi:10.4156/ijact.vol4.issue10.19

12. Li, Y., Y. Li, H. Su, Z. Li, and S. Zhu, "Passive millimeter wave image denoising based on improved version of BM3D," Advances in Information Sciences & Service Sciences, Vol. 4, No. 22, 106-113, 2012.
doi:10.4156/aiss.vol4.issue22.14

13. Zhu, S., Y. Li, and Y. Li, "A PMMW image denoising based on adaptive manifolds and high-dimensional mean median filter," Optik, Vol. 126, No. 24, 5624-5628, 2015.
doi:10.1016/j.ijleo.2015.09.089

14. Buades, A., B. Coll, and J. M. Morel, "A non-local algorithm for image denoising," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 60-65, 2005.

15. Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080-2095, 2007.
doi:10.1109/TIP.2007.901238

16. Hou, Y., J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao, "NLH: A blind pixel-level non-local method for real-world image denoising," IEEE Transactions on Image Processing, Vol. 29, 5121-5135, 2020.
doi:10.1109/TIP.2020.2980116

17. Hou, H., Y. Shao, Y. Geng, Y. Hou, P. Ding, and B. Wei, "PNCS: Pixel-level non-local method based compressed sensing undersampled MRI image reconstruction," IEEE Access, Vol. 11, 42389-42402, 2023.
doi:10.1109/ACCESS.2023.3270900

18. Xu, J., Z.-A. Liu, Y.-K. Hou, X.-T. Zhen, L. Shao, and M.-M. Cheng, "Pixel-level non-local image smoothing with objective evaluation," IEEE Transactions on Multimedia, Vol. 23, 4065-4078, 2021.
doi:10.1109/TMM.2020.3037535

19. Zhu, R., X. Li, Y. Wang, and X. Zhang, "Medical image fusion based on pixel-level nonlocal self-similarity prior and optimization," International Conference on Database Systems for Advanced Applications, 2022.

20. Sweldens, W., "The lifting scheme: A custom-design construction of biorthogonal wavelets," Applied and Computational Harmonic Analysis, Vol. 3, No. 2, 186-200, 1996.
doi:10.1006/acha.1996.0015

21. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
doi:10.1109/TIP.2003.819861