1. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702
2. Zhu, S., Y. Li, J. Chen, and Y. Li, "Passive millimeter wave image denoising based on adaptive manifolds," Progress In Electromagnetics Research B, Vol. 57, 63-73, 2014.
doi:10.2528/PIERB13092608
3. Cheng, Y., Y. Wang, Y. Niu, H. Rutt, and Z. Zhao, "Physically based object contour edge display using adjustable linear polarization ratio for passive millimeter-wave security imaging," IEEE Transactions on Geoscience and Remote Sensing, 1-15, 2020.
doi:10.1080/15481603.2019.1650447
4. Peng, R., J. Chen, Z. Liu, and Z. Guo, "Millimeter wave image super resolution using multichannel depth convolution neural network," Progress In Electromagnetics Research M, Vol. 113, 225-235, 2022.
doi:10.2528/PIERM22070801
5. Yang, H., Z. Yang, A. Hu, C. Liu, T. J. Cui, and J. Miao, "Source-free domain adaptive detection of concealed objects in passive millimeter-wave images," IEEE Transactions on Instrumentation and Measurement, Vol. 72, No. 5005015, 1-15, 2023.
6. Fu, P., D. Zhu, F. Hu, Y. Xu, and H. Xia, "A near-field imaging algorithm based on angular spectrum theory for synthetic aperture interferometric radiometer," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3606-3616, 2022.
doi:10.1109/TMTT.2022.3175156
7. Sun, D., Y. Shi, and Y. Feng, "Blind deblurring and denoising via a learning deep CNN denoiser prior and an adaptive L0-regularised gradient prior for passive millimetre-wave images," IET Image Processing, Vol. 14, No. 17, 4774-4784, 2020.
doi:10.1049/iet-ipr.2020.1193
8. Sarkis, M., "Adaptive reconstruction of millimeter-wave radiometric images," IEEE Transactions on Image Processing, Vol. 21, No. 9, 4141-4151, 2012.
doi:10.1109/TIP.2012.2198219
9. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "Adaptive CLEAN algorithm for millimeter wave synthetic aperture imaging radiometer in near field," IET Image Processing, Vol. 9, No. 3, 218-225, 2015.
doi:10.1049/iet-ipr.2014.0443
10. Zhao, Y., W. Si, A. Hu, and J. Miao, "A real-time calibration method of visibility function for passive millimeter wave imaging," IEEE International Conference on Microwave and Millimeter Wave Technology, 2020.
11. Li, Y. and Y. Li, "Passive millimeter-wave image denoising based on improved algorithm of non-local mean," International Journal of Advancements in Computing Technology, Vol. 4, No. 10, 158-164, 2012.
doi:10.4156/ijact.vol4.issue10.19
12. Li, Y., Y. Li, H. Su, Z. Li, and S. Zhu, "Passive millimeter wave image denoising based on improved version of BM3D," Advances in Information Sciences & Service Sciences, Vol. 4, No. 22, 106-113, 2012.
doi:10.4156/aiss.vol4.issue22.14
13. Zhu, S., Y. Li, and Y. Li, "A PMMW image denoising based on adaptive manifolds and high-dimensional mean median filter," Optik, Vol. 126, No. 24, 5624-5628, 2015.
doi:10.1016/j.ijleo.2015.09.089
14. Buades, A., B. Coll, and J. M. Morel, "A non-local algorithm for image denoising," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 60-65, 2005.
15. Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080-2095, 2007.
doi:10.1109/TIP.2007.901238
16. Hou, Y., J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao, "NLH: A blind pixel-level non-local method for real-world image denoising," IEEE Transactions on Image Processing, Vol. 29, 5121-5135, 2020.
doi:10.1109/TIP.2020.2980116
17. Hou, H., Y. Shao, Y. Geng, Y. Hou, P. Ding, and B. Wei, "PNCS: Pixel-level non-local method based compressed sensing undersampled MRI image reconstruction," IEEE Access, Vol. 11, 42389-42402, 2023.
doi:10.1109/ACCESS.2023.3270900
18. Xu, J., Z.-A. Liu, Y.-K. Hou, X.-T. Zhen, L. Shao, and M.-M. Cheng, "Pixel-level non-local image smoothing with objective evaluation," IEEE Transactions on Multimedia, Vol. 23, 4065-4078, 2021.
doi:10.1109/TMM.2020.3037535
19. Zhu, R., X. Li, Y. Wang, and X. Zhang, "Medical image fusion based on pixel-level nonlocal self-similarity prior and optimization," International Conference on Database Systems for Advanced Applications, 2022.
20. Sweldens, W., "The lifting scheme: A custom-design construction of biorthogonal wavelets," Applied and Computational Harmonic Analysis, Vol. 3, No. 2, 186-200, 1996.
doi:10.1006/acha.1996.0015
21. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
doi:10.1109/TIP.2003.819861