1. Ray, S., S. K. Patel, V. Kumar, J. Damahe, and S. Srivastava, "Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures," Proteomics Clin. Appl., Vol. 8, 53-72, 2014.
doi:10.1002/prca.201300074
2. Tsurusawa, N., J. Chang, M. Namba, D. Makioka, S. Yamura, K. Iha, Y. Kyosei, S. Watabe, T. Yoshimura, and E. Ito, "Modified ELISA for ultrasensitive diagnosis," J. Clin Med., Vol. 10, No. 21, 5197, 2021.
doi:10.3390/jcm10215197
3. Chen, H., M. Xiao, J. He, Y. Zhang, Y. Liang, H. Liu, and Z. Zhang, "Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer's disease serum biomarker detection," ACS Sens., Vol. 7, 2075-2083, 2022.
doi:10.1021/acssensors.2c00967
4. Devonshire, A., Y. Gautam, E. Johansson, and T. B. Mersha, "Multi-omics profiling approach in food allergy," World Allergy Organ J., Vol. 16, 100777, 2023.
doi:10.1016/j.waojou.2023.100777
5. Pei, Y., Y. Tong, H. Li, and J. You, "In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake," J. Hazard Mater., Vol. 427, 128143, 2022.
doi:10.1016/j.jhazmat.2021.128143
6. Rodriguez, A., F. Burgos-Florez, J. D. Posada, E. Cervera, V. Zucolotto, H. Sanjuan, M. Sanjuan, and P. J. Villalba, "Electrochemical immunosensor for the quantification of S100B at clinically relevant levels using a cysteamine modified surface," Sensors (Basel), Vol. 21, No. 6, 1929, 2021.
doi:10.3390/s21061929
7. Mao, C., S. Wang, Y. Su, S. Tseng, L. He, A. Wu, R. Roden, J. Xiao, and C. Hung, "Protein detection in blood with single-molecule imaging," Sci. Adv., Vol. 7, eabg6522, 2021.
doi:10.1126/sciadv.abg6522
8. Ying, L. and Q. Wang, "Microfluidic chip-based technologies emerging platforms for cancer diagnosis," BMC Biotechnology, Vol. 13, 76, 2013.
doi:10.1186/1472-6750-13-76
9. Dijkstra, M. and R. C. Jansen, "Optimal analysis of complex protein mass spectra," Proteomics., Vol. 9, 3869-3876, 2009.
doi:10.1002/pmic.200701064
10. Roy, P., C. Truntzer, D. Maucort-Boulch, T. Jouve, and N. Molinari, "Protein mass spectra data analysis for clinical biomarker discovery: A global review," Brief Bioinform., Vol. 12, 176-186, 2011.
doi:10.1093/bib/bbq019
11. Xu, Z., Y. Jiang, and S. He, "Multi-mode microscopic hyperspectral imager for the sensing of biological samples," Applied Sciences, Vol. 10, No. 14, 4876, 2020.
doi:10.3390/app10144876
12. Xu, Z., E. Forsberg, Y. Guo, F. Cai, and S. He, "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, No. 10, 2842, 2020.
doi:10.3390/s20102842
13. Wang, X., P. Wen, Z. G. Sun, C. Y. Xing, and Y. Li, "Combination of chest CT and clinical features for diagnosis of 2019 novel coronavirus pneumonia," Open Med. (Wars), Vol. 15, 723-727, 2020.
doi:10.1515/med-2020-0107
14. Fang, Y., "Large-scale national screening for coronavirus disease 2019 in China," J. Med. Virol., Vol. 92, 2266-2268, 2020.
doi:10.1002/jmv.26173
15. McLaughlin, J. B., B. D. Gessner, T. V. Lynn, E. A. Funk, and J. P. Middaugh, "Association of regulatory issues with an echovirus 18 meningitis outbreak at a children's summer camp in Alaska," Pediatr. Infect. Dis. J., Vol. 23, 875-877, 2004.
doi:10.1097/01.inf.0000136867.18026.22
16. Sampaio, V. V., A. S. O. Melo, A. L. Coleman, F. Yu, S. R. Martins, L. P. Rabello, J. S. Tavares, and K. Nielsen-Saines, "A novel radiologic finding to predict ophthalmic abnormalities in children with congenital Zika syndrome," Pediatric. Infect. Dis. Soc. J., Vol. 10, 730-737, 2021.
doi:10.1093/jpids/piab010
17. Banerjee, R. and A. Jaiswal, "Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases," Analyst, Vol. 143, 1970-1996, 2018.
doi:10.1039/C8AN00307F
18. Nguyen, V. T., S. Song, S. Park, and C. Joo, "Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay," Biosens. Bioelectron., Vol. 152, 112015, 2020.
doi:10.1016/j.bios.2020.112015
19. Li, F., M. You, S. Li, J. Hu, C. Liu, Y. Gong, H. Yang, and F. Xu, "Paper-based point-of-care immunoassays: Recent advances and emerging trends," Biotechnol. Adv., Vol. 39, 107442, 2020.
doi:10.1016/j.biotechadv.2019.107442
20. Huang, X., Z. P. Aguilar, H. Xu, W. Lai, and Y. Xiong, "Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review," Biosens. Bioelectron., Vol. 75, 166-180, 2016.
doi:10.1016/j.bios.2015.08.032
21. Fu, E., T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager, "Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format," Anal. Chem., Vol. 83, 7941-7946, 2011.
doi:10.1021/ac201950g
22. Di Nardo, F., M. Chiarello, S. Cavalera, C. Baggiani, and L. Anfossi, "Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives," Sensors (Basel), Vol. 21, No. 15, 5185, 2021.
doi:10.3390/s21155185
23. Rivas, L., A. D. L. Escosura-Muniz, J. Pons, and A. Merkoci, "Lateral flow biosensors based on gold nanoparticles," Gold Nanoparticles in Analytical Chemistry, 569-605, 2014.
doi:10.1016/B978-0-444-63285-2.00014-6
24. Anfossi, L., F. Di Nardo, A. Russo, S. Cavalera, C. Giovannoli, G. Spano, S. Baumgartner, K. Lauter, and C. Baggiani, "Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens," Anal. Bioanal. Chem., Vol. 411, 1905-1913, 2019.
doi:10.1007/s00216-018-1451-6
25. Wu, J. L., W. P. Tseng, C. H. Lin, T. F. Lee, M. Y. Chung, C. H. Huang, S. Y. Chen, P. R. Hsueh, and S. C. Chen, "Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2," J. Infect., Vol. 81, 435-442, 2020.
doi:10.1016/j.jinf.2020.06.023
26. Kim, K., L. Kashefi-Kheyrabadi, Y. Joung, K. Kim, H. Dang, S. G. Chavan, M. H. Lee, and J. Choo, "Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases," Sens. Actuators B: Chem., Vol. 329, 129214, 2021.
doi:10.1016/j.snb.2020.129214
27. Xiang, T., Z. Jiang, J. Zheng, C. Lo, H. Tsou, G. Ren, J. Zhang, A. Huang, and G. Lai, "A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus," Int. J. Mol. Med., Vol. 30, 1041-1047, 2012.
doi:10.3892/ijmm.2012.1121
28. Shi, Z., Y. Tian, X. Wu, C. Li, and L. Yu, "A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection," Analytical Methods, Vol. 7, 4957-4964, 2015.
doi:10.1039/C5AY00706B
29. Ganguly, A., T. Ebrahimzadeh, P. Zimmern, N. De Nisco, and S. Prasad, "Label free, lateral flow prostaglandin E2 electrochemical immunosensor for urinary tract infection diagnosis," Chemosensors, Vol. 9, 271, 2021.
doi:10.3390/chemosensors9090271
30. Li, Z., Y. Wang, J. Wang, Z. Tang, J. G. Pounds, and Y. Lin, "Rapid and sensitive detection of protein biomarker using a portable °uorescence biosensor based on quantum dots and a lateral flow test strip," Analytical Chemistry, Vol. 82, 7008-7014, 2010.
doi:10.1021/ac101405a
31. Fang, B., S. Hua, C.Wang, M. Yuan, Z. Huang, K. Xing, D. Liu, J. Peng, and W. Lai, "Lateral flow immunoassays combining and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads," Food Control, Vol. 98, 268-273, 2019.
doi:10.1016/j.foodcont.2018.11.039
32. Wang, Y., C. Fill, and S. R. Nugen, "Development of chemiluminescent lateral flow assay for the detection of nucleic acids," Biosensors (Basel), Vol. 2, 32-42, 2012.
doi:10.3390/bios2010032
33. Park, J. M., H. W. Jung, Y. W. Chang, H. S. Kim, M. J. Kang, and J. C. Pyun, "Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity," Anal. Chim. Acta., Vol. 853, 360-367, 2015.
doi:10.1016/j.aca.2014.10.011
34. Khlebtsov, B. and N. Khlebtsov, "Surface-enhanced Raman scattering-based lateral-flow immunoassay," Nanomaterials (Basel), Vol. 10, No. 11, 2228, 2020.
doi:10.3390/nano10112228
35. Gunawardhana, L., K. Kourentzi, A. Danthanarayana, J. Brgoch, X. Shan, R. Willson, and W. Shih, "SERS-based ultrasensitive lateral flow assay for quantitative sensing of protein biomarkers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, 6900608, 2021.
36. Chen, S., L. Meng, L. Wang, X. Huang, S. Ali, X. Chen, M. Yu, M. Yi, L. Li, X. Chen, L. Yuan, W. Shi, and G. Huang, "SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags," Sens. Actuators B: Chem., Vol. 348, 130706, 2021.
doi:10.1016/j.snb.2021.130706
37. Tran, V., B. Walkenfort, M. Konig, M. Salehi, and S. Schlucker, "Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry," Angew. Chem. Int. Ed. Engl., Vol. 58, 442-446, 2019.
doi:10.1002/anie.201810917
38. Sloan-Dennison, S., E. O'Connor, J. W. Dear, D. Graham, and K. Faulds, "Towards quantitative point of care detection using SERS lateral flow immunoassays," Anal. Bioanal. Chem., Vol. 414, 4541-4549, 2022.
doi:10.1007/s00216-022-03933-8
39. Lia, Y., S. Tang, W. Zhang, X. Cui, Y. Zhang, Y. Jin, X. Zhang, and Y. Chen, "A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk," Sens. Actuators B: Chem., Vol. 282, 703-711, 2019.
doi:10.1016/j.snb.2018.11.050
40. Jones, R. R., D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, "Raman techniques: Fundamentals and frontiers," Nanoscale Res. Lett., Vol. 14, 231, 2019.
doi:10.1186/s11671-019-3039-2
41. Ando, J. and K. Fujita, "Metallic nanoparticles as SERS agents for biomolecular imaging," Current Pharmaceutical Biotechnology, Vol. 14, 141-149, 2013.
42. Bantz, K. C., A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh, and C. L. Haynes, "Recent progress in SERS biosensing," Phys. Chem. Chem. Phys., Vol. 13, 11551-11567, 2011.
doi:10.1039/c0cp01841d
43. Chen, R., X. Du, Y. Cui, X. Zhang, Q. Ge, J. Dong, and X. Zhao, "Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags," Small, Vol. 16, e2002801, 2020.
doi:10.1002/smll.202002801
44. Fu, X., Z. Cheng, J. Yu, P. Choo, L. Chen, and J. Choo, "A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA," Biosens. Bioelectron., Vol. 78, 530-537, 2016.
doi:10.1016/j.bios.2015.11.099
45. Zhang, W., S. Tang, Y. Jin, C. Yang, L. He, J. Wang, and Y. Chen, "Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines," J. Hazard Mater., Vol. 393, 122348, 2020.
doi:10.1016/j.jhazmat.2020.122348
46. He, D., Z. Wu, B. Cui, and E. Xu, "Dual-mode aptasensor for SERS and Chiral detection of campylobacter jejuni," Food Analytical Methods, Vol. 12, 2185-2193, 2019.
doi:10.1007/s12161-019-01574-9
47. Su, L., H. Hu, Y. Tian, C. Jia, L. Wang, H. Zhang, J. Wang, and D. Zhang, "Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte," Anal. Chem., Vol. 93, 8362-8369, 2021.
doi:10.1021/acs.analchem.1c01487
48. Liu, B., S. Zheng, Q. Liu, B. Gao, X. Zhao, and F. Sun, "SERS-based lateral flow immunoassay strip for ultrasensitive and quantitative detection of acrosomal protein SP10," Microchemical Journal, Vol. 175, 107191, 2022.
doi:10.1016/j.microc.2022.107191
49. He, W., M. Wang, M. Li, Z. Zhong, H. Chen, S. Xi, Z. Luan, C. Li, and X. Zhang, "Confocal Raman microscopy for assessing effects of preservation methods on symbiotic deep-sea mussel gills," Frontiers in Marine Science, Vol. 9, 2022.
50. Hu, C., X. Wang, L. Liu, C. Fu, K. Chu, and Z. J. Smith, "Fast confocal Raman imaging via context-aware compressive sensing," The Analyst, Vol. 146, 2348-2357, 2021.
doi:10.1039/D1AN00088H
51. Guo, T., Z. Lin, X. Xu, Z. Zhang, X. Chen, N. He, G. Wang, Y. Jin, J. Evans, and S. He, "Dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
doi:10.2528/PIER23030703
52. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702
53. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504
54. Paddock, S., "Principles and practices of laser scanning confocal microscopy," Molecular Biotechnology, Vol. 16, 127-149, 2000.
doi:10.1385/MB:16:2:127
55. Vos, T., A. D. Flaxman, M. Naghavi, R. Lozano, C. Michaud, and M. Ezzati, "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990{2010: A systematic analysis for the Global Burden of Disease Study 2010," Lancet, Vol. 380, 2163-2196, 2012.
doi:10.1016/S0140-6736(12)61729-2
56. Park, S. W., D. M. Cornforth, J. Dushoff, and J. S. Weitz, "The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak," Epidemics, Vol. 31, 100392, 2020.
doi:10.1016/j.epidem.2020.100392
57. Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia," N. Engl. J. Med., Vol. 382, 1199-1207, 2020.
doi:10.1056/NEJMoa2001316
58. Li, Z., Y. Yi, X. Luo, N. Xiong, Y. Liu, S. Li, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, and F. Ye, "Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis," J. Med. Virol., Vol. 92, 1518-1524, 2020.
doi:10.1002/jmv.25727
59. Zhou, Y., L. Zhang, Y. H. Xie, and J. Wu, "Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics," Lab Invest., Vol. 102, 4-13, 2022.
doi:10.1038/s41374-021-00663-w
60. Vega-Magana, N., R. Sanchez-Sanchez, J. Hernandez-Bello, A. A. Venancio-Landeros, M. Pena- Rodriguez, R. A. Vega-Zepeda, B. Galindo-Ornelas, M. Diaz-Sanchez, M. Garcia-Chagollan, G. Macedo-Ojeda, O. P. Garcia-Gonzalez, and J. F. Munoz-Valle, "RT-qPCR assays for rapid detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 mutations: A screening strategy to identify variants with clinical impact," Front Cell Infect Microbiol., Vol. 11, 672562, 2021.
doi:10.3389/fcimb.2021.672562
61. Croxen, M. A., R. J. Law, R. Scholz, K. M. Keeney, M. Wlodarska, and B. B. Finlay, "Recent advances in understanding enteric pathogenic Escherichia coli," Clin. Microbiol. Rev., Vol. 26, 822-880, 2013.
doi:10.1128/CMR.00022-13
62. Pennington, H., "Escherichia coli O157," Lancet, Vol. 376, 1428-1435, 2010.
doi:10.1016/S0140-6736(10)60963-4
63. Song, C., C. Liu, S. Wu, H. Li, H. Guo, B. Yang, S. Qiu, J. Li, L. Liu, H. Zeng, X. Zhai, and Q. Liu, "Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157 H7 in bread, milk and jelly samples," Food Control, Vol. 59, 345-351, 2016.
doi:10.1016/j.foodcont.2015.06.012
64. Pang, B., C. Zhao, L. Li, X. Song, K. Xu, J. Wang, Y. Liu, K. Fu, H. Bao, D. Song, X. Meng, X. Qu, Z. Zhang, and J. Li, "Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection," Anal. Biochem., Vol. 542, 58-62, 2018.
doi:10.1016/j.ab.2017.11.010
65. Zhao, Y., Y. Li, P. Zhang, Z. Yan, Y. Zhou, Y. Du, C. Qu, Y. Song, D. Zhou, S. Qu, and R. Yang, "Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk," Biosens. Bioelectron., Vol. 179, 113057, 2021.
doi:10.1016/j.bios.2021.113057
66. Li, Z., X. Zhang, H. Qi, X. Huang, J. Shi, and X. Zou, "A novel renewable electrochemical biosensor based on mussel-inspired adhesive protein for the detection of Escherichia coli O157 H7 in food," Sens. Actuators B: Chem., Vol. 372, 132601, 2022.
doi:10.1016/j.snb.2022.132601
67. Jo, Y., J. Park, and J. K. Park, "Colorimetric detection of escherichia coli O157: H7 with signal enhancement using size-based filtration on a finger-powered microfluidic device," Sensors (Basel), Vol. 20, No. 8, 2267, 2020.
doi:10.3390/s20082267
68. Sun, Y., C. Kuo, C. Lu, and C. Lin, "Review of recent advances in improved lateral flow immunoassay for the detection of pathogenic Escherichia coli O157 H7 in foods," Journal of Food Safety, Vol. 41, e12867, 2021.
doi:10.1111/jfs.12867
69. Nikoobakht, B. and M. A. El-Sayed, "Surface-enhanced Raman scattering studies on aggregated gold nanorods," J. Phys. Chem. A., Vol. 107, 3372-3378, 2003.
doi:10.1021/jp026770+
70. Farooq, S. and R. E. de Araujo, "Identifying high performance gold nanoshells for singlet oxygen generation enhancement," Photodiagnosis and Photodynamic Therapy, Vol. 35, 102466, 2021.
doi:10.1016/j.pdpdt.2021.102466