Vol. 120
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-21
Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers
By
Progress In Electromagnetics Research M, Vol. 120, 41-54, 2023
Abstract
Rapid and sensitive analysis of proteins in complex biological environments is crucial for the screening and defense against infectious diseases. Here, we show that the lateral flow immunoassay strip based on confocal Raman imaging can achieve immune analysis at pM and ~104 cfu/mL molecular level for the rapid detection of COVID-19 virus and bacteria. Fluorescent dyes of Alexa 647 were used as Raman markers in the Raman silent region of 1800 cm-1 and 2800 cm-1, and colloidal gold nanospheres were used to enhance the Raman signal. Raman imaging was performed with our self-developed confocal Raman microscopy for COVID-19 and Escherichia coli O157: H7 on lateral flow immunoassay strip. Compared to traditional colloidal gold test strips, the sensitivity of this technology has been significantly improved. This work will promote the widespread application of surface enhanced Raman detection for bacteria and virus, which is of great significance for in vitro screening and disease diagnosis.
Citation
Chuan Zhang, Anqi Yang, and Sailing He, "Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers," Progress In Electromagnetics Research M, Vol. 120, 41-54, 2023.
doi:10.2528/PIERM23101104
References

1. Ray, S., S. K. Patel, V. Kumar, J. Damahe, and S. Srivastava, "Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures," Proteomics Clin. Appl., Vol. 8, 53-72, 2014.
doi:10.1002/prca.201300074

2. Tsurusawa, N., J. Chang, M. Namba, D. Makioka, S. Yamura, K. Iha, Y. Kyosei, S. Watabe, T. Yoshimura, and E. Ito, "Modified ELISA for ultrasensitive diagnosis," J. Clin Med., Vol. 10, No. 21, 5197, 2021.
doi:10.3390/jcm10215197

3. Chen, H., M. Xiao, J. He, Y. Zhang, Y. Liang, H. Liu, and Z. Zhang, "Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer's disease serum biomarker detection," ACS Sens., Vol. 7, 2075-2083, 2022.
doi:10.1021/acssensors.2c00967

4. Devonshire, A., Y. Gautam, E. Johansson, and T. B. Mersha, "Multi-omics profiling approach in food allergy," World Allergy Organ J., Vol. 16, 100777, 2023.
doi:10.1016/j.waojou.2023.100777

5. Pei, Y., Y. Tong, H. Li, and J. You, "In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake," J. Hazard Mater., Vol. 427, 128143, 2022.
doi:10.1016/j.jhazmat.2021.128143

6. Rodriguez, A., F. Burgos-Florez, J. D. Posada, E. Cervera, V. Zucolotto, H. Sanjuan, M. Sanjuan, and P. J. Villalba, "Electrochemical immunosensor for the quantification of S100B at clinically relevant levels using a cysteamine modified surface," Sensors (Basel), Vol. 21, No. 6, 1929, 2021.
doi:10.3390/s21061929

7. Mao, C., S. Wang, Y. Su, S. Tseng, L. He, A. Wu, R. Roden, J. Xiao, and C. Hung, "Protein detection in blood with single-molecule imaging," Sci. Adv., Vol. 7, eabg6522, 2021.
doi:10.1126/sciadv.abg6522

8. Ying, L. and Q. Wang, "Microfluidic chip-based technologies emerging platforms for cancer diagnosis," BMC Biotechnology, Vol. 13, 76, 2013.
doi:10.1186/1472-6750-13-76

9. Dijkstra, M. and R. C. Jansen, "Optimal analysis of complex protein mass spectra," Proteomics., Vol. 9, 3869-3876, 2009.
doi:10.1002/pmic.200701064

10. Roy, P., C. Truntzer, D. Maucort-Boulch, T. Jouve, and N. Molinari, "Protein mass spectra data analysis for clinical biomarker discovery: A global review," Brief Bioinform., Vol. 12, 176-186, 2011.
doi:10.1093/bib/bbq019

11. Xu, Z., Y. Jiang, and S. He, "Multi-mode microscopic hyperspectral imager for the sensing of biological samples," Applied Sciences, Vol. 10, No. 14, 4876, 2020.
doi:10.3390/app10144876

12. Xu, Z., E. Forsberg, Y. Guo, F. Cai, and S. He, "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, No. 10, 2842, 2020.
doi:10.3390/s20102842

13. Wang, X., P. Wen, Z. G. Sun, C. Y. Xing, and Y. Li, "Combination of chest CT and clinical features for diagnosis of 2019 novel coronavirus pneumonia," Open Med. (Wars), Vol. 15, 723-727, 2020.
doi:10.1515/med-2020-0107

14. Fang, Y., "Large-scale national screening for coronavirus disease 2019 in China," J. Med. Virol., Vol. 92, 2266-2268, 2020.
doi:10.1002/jmv.26173

15. McLaughlin, J. B., B. D. Gessner, T. V. Lynn, E. A. Funk, and J. P. Middaugh, "Association of regulatory issues with an echovirus 18 meningitis outbreak at a children's summer camp in Alaska," Pediatr. Infect. Dis. J., Vol. 23, 875-877, 2004.
doi:10.1097/01.inf.0000136867.18026.22

16. Sampaio, V. V., A. S. O. Melo, A. L. Coleman, F. Yu, S. R. Martins, L. P. Rabello, J. S. Tavares, and K. Nielsen-Saines, "A novel radiologic finding to predict ophthalmic abnormalities in children with congenital Zika syndrome," Pediatric. Infect. Dis. Soc. J., Vol. 10, 730-737, 2021.
doi:10.1093/jpids/piab010

17. Banerjee, R. and A. Jaiswal, "Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases," Analyst, Vol. 143, 1970-1996, 2018.
doi:10.1039/C8AN00307F

18. Nguyen, V. T., S. Song, S. Park, and C. Joo, "Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay," Biosens. Bioelectron., Vol. 152, 112015, 2020.
doi:10.1016/j.bios.2020.112015

19. Li, F., M. You, S. Li, J. Hu, C. Liu, Y. Gong, H. Yang, and F. Xu, "Paper-based point-of-care immunoassays: Recent advances and emerging trends," Biotechnol. Adv., Vol. 39, 107442, 2020.
doi:10.1016/j.biotechadv.2019.107442

20. Huang, X., Z. P. Aguilar, H. Xu, W. Lai, and Y. Xiong, "Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review," Biosens. Bioelectron., Vol. 75, 166-180, 2016.
doi:10.1016/j.bios.2015.08.032

21. Fu, E., T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager, "Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format," Anal. Chem., Vol. 83, 7941-7946, 2011.
doi:10.1021/ac201950g

22. Di Nardo, F., M. Chiarello, S. Cavalera, C. Baggiani, and L. Anfossi, "Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives," Sensors (Basel), Vol. 21, No. 15, 5185, 2021.
doi:10.3390/s21155185

23. Rivas, L., A. D. L. Escosura-Muniz, J. Pons, and A. Merkoci, "Lateral flow biosensors based on gold nanoparticles," Gold Nanoparticles in Analytical Chemistry, 569-605, 2014.
doi:10.1016/B978-0-444-63285-2.00014-6

24. Anfossi, L., F. Di Nardo, A. Russo, S. Cavalera, C. Giovannoli, G. Spano, S. Baumgartner, K. Lauter, and C. Baggiani, "Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens," Anal. Bioanal. Chem., Vol. 411, 1905-1913, 2019.
doi:10.1007/s00216-018-1451-6

25. Wu, J. L., W. P. Tseng, C. H. Lin, T. F. Lee, M. Y. Chung, C. H. Huang, S. Y. Chen, P. R. Hsueh, and S. C. Chen, "Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2," J. Infect., Vol. 81, 435-442, 2020.
doi:10.1016/j.jinf.2020.06.023

26. Kim, K., L. Kashefi-Kheyrabadi, Y. Joung, K. Kim, H. Dang, S. G. Chavan, M. H. Lee, and J. Choo, "Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases," Sens. Actuators B: Chem., Vol. 329, 129214, 2021.
doi:10.1016/j.snb.2020.129214

27. Xiang, T., Z. Jiang, J. Zheng, C. Lo, H. Tsou, G. Ren, J. Zhang, A. Huang, and G. Lai, "A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus," Int. J. Mol. Med., Vol. 30, 1041-1047, 2012.
doi:10.3892/ijmm.2012.1121

28. Shi, Z., Y. Tian, X. Wu, C. Li, and L. Yu, "A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection," Analytical Methods, Vol. 7, 4957-4964, 2015.
doi:10.1039/C5AY00706B

29. Ganguly, A., T. Ebrahimzadeh, P. Zimmern, N. De Nisco, and S. Prasad, "Label free, lateral flow prostaglandin E2 electrochemical immunosensor for urinary tract infection diagnosis," Chemosensors, Vol. 9, 271, 2021.
doi:10.3390/chemosensors9090271

30. Li, Z., Y. Wang, J. Wang, Z. Tang, J. G. Pounds, and Y. Lin, "Rapid and sensitive detection of protein biomarker using a portable °uorescence biosensor based on quantum dots and a lateral flow test strip," Analytical Chemistry, Vol. 82, 7008-7014, 2010.
doi:10.1021/ac101405a

31. Fang, B., S. Hua, C.Wang, M. Yuan, Z. Huang, K. Xing, D. Liu, J. Peng, and W. Lai, "Lateral flow immunoassays combining and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads," Food Control, Vol. 98, 268-273, 2019.
doi:10.1016/j.foodcont.2018.11.039

32. Wang, Y., C. Fill, and S. R. Nugen, "Development of chemiluminescent lateral flow assay for the detection of nucleic acids," Biosensors (Basel), Vol. 2, 32-42, 2012.
doi:10.3390/bios2010032

33. Park, J. M., H. W. Jung, Y. W. Chang, H. S. Kim, M. J. Kang, and J. C. Pyun, "Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity," Anal. Chim. Acta., Vol. 853, 360-367, 2015.
doi:10.1016/j.aca.2014.10.011

34. Khlebtsov, B. and N. Khlebtsov, "Surface-enhanced Raman scattering-based lateral-flow immunoassay," Nanomaterials (Basel), Vol. 10, No. 11, 2228, 2020.
doi:10.3390/nano10112228

35. Gunawardhana, L., K. Kourentzi, A. Danthanarayana, J. Brgoch, X. Shan, R. Willson, and W. Shih, "SERS-based ultrasensitive lateral flow assay for quantitative sensing of protein biomarkers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, 6900608, 2021.

36. Chen, S., L. Meng, L. Wang, X. Huang, S. Ali, X. Chen, M. Yu, M. Yi, L. Li, X. Chen, L. Yuan, W. Shi, and G. Huang, "SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags," Sens. Actuators B: Chem., Vol. 348, 130706, 2021.
doi:10.1016/j.snb.2021.130706

37. Tran, V., B. Walkenfort, M. Konig, M. Salehi, and S. Schlucker, "Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry," Angew. Chem. Int. Ed. Engl., Vol. 58, 442-446, 2019.
doi:10.1002/anie.201810917

38. Sloan-Dennison, S., E. O'Connor, J. W. Dear, D. Graham, and K. Faulds, "Towards quantitative point of care detection using SERS lateral flow immunoassays," Anal. Bioanal. Chem., Vol. 414, 4541-4549, 2022.
doi:10.1007/s00216-022-03933-8

39. Lia, Y., S. Tang, W. Zhang, X. Cui, Y. Zhang, Y. Jin, X. Zhang, and Y. Chen, "A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk," Sens. Actuators B: Chem., Vol. 282, 703-711, 2019.
doi:10.1016/j.snb.2018.11.050

40. Jones, R. R., D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, "Raman techniques: Fundamentals and frontiers," Nanoscale Res. Lett., Vol. 14, 231, 2019.
doi:10.1186/s11671-019-3039-2

41. Ando, J. and K. Fujita, "Metallic nanoparticles as SERS agents for biomolecular imaging," Current Pharmaceutical Biotechnology, Vol. 14, 141-149, 2013.

42. Bantz, K. C., A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh, and C. L. Haynes, "Recent progress in SERS biosensing," Phys. Chem. Chem. Phys., Vol. 13, 11551-11567, 2011.
doi:10.1039/c0cp01841d

43. Chen, R., X. Du, Y. Cui, X. Zhang, Q. Ge, J. Dong, and X. Zhao, "Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags," Small, Vol. 16, e2002801, 2020.
doi:10.1002/smll.202002801

44. Fu, X., Z. Cheng, J. Yu, P. Choo, L. Chen, and J. Choo, "A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA," Biosens. Bioelectron., Vol. 78, 530-537, 2016.
doi:10.1016/j.bios.2015.11.099

45. Zhang, W., S. Tang, Y. Jin, C. Yang, L. He, J. Wang, and Y. Chen, "Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines," J. Hazard Mater., Vol. 393, 122348, 2020.
doi:10.1016/j.jhazmat.2020.122348

46. He, D., Z. Wu, B. Cui, and E. Xu, "Dual-mode aptasensor for SERS and Chiral detection of campylobacter jejuni," Food Analytical Methods, Vol. 12, 2185-2193, 2019.
doi:10.1007/s12161-019-01574-9

47. Su, L., H. Hu, Y. Tian, C. Jia, L. Wang, H. Zhang, J. Wang, and D. Zhang, "Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte," Anal. Chem., Vol. 93, 8362-8369, 2021.
doi:10.1021/acs.analchem.1c01487

48. Liu, B., S. Zheng, Q. Liu, B. Gao, X. Zhao, and F. Sun, "SERS-based lateral flow immunoassay strip for ultrasensitive and quantitative detection of acrosomal protein SP10," Microchemical Journal, Vol. 175, 107191, 2022.
doi:10.1016/j.microc.2022.107191

49. He, W., M. Wang, M. Li, Z. Zhong, H. Chen, S. Xi, Z. Luan, C. Li, and X. Zhang, "Confocal Raman microscopy for assessing effects of preservation methods on symbiotic deep-sea mussel gills," Frontiers in Marine Science, Vol. 9, 2022.

50. Hu, C., X. Wang, L. Liu, C. Fu, K. Chu, and Z. J. Smith, "Fast confocal Raman imaging via context-aware compressive sensing," The Analyst, Vol. 146, 2348-2357, 2021.
doi:10.1039/D1AN00088H

51. Guo, T., Z. Lin, X. Xu, Z. Zhang, X. Chen, N. He, G. Wang, Y. Jin, J. Evans, and S. He, "Dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
doi:10.2528/PIER23030703

52. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702

53. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504

54. Paddock, S., "Principles and practices of laser scanning confocal microscopy," Molecular Biotechnology, Vol. 16, 127-149, 2000.
doi:10.1385/MB:16:2:127

55. Vos, T., A. D. Flaxman, M. Naghavi, R. Lozano, C. Michaud, and M. Ezzati, "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990{2010: A systematic analysis for the Global Burden of Disease Study 2010," Lancet, Vol. 380, 2163-2196, 2012.
doi:10.1016/S0140-6736(12)61729-2

56. Park, S. W., D. M. Cornforth, J. Dushoff, and J. S. Weitz, "The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak," Epidemics, Vol. 31, 100392, 2020.
doi:10.1016/j.epidem.2020.100392

57. Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia," N. Engl. J. Med., Vol. 382, 1199-1207, 2020.
doi:10.1056/NEJMoa2001316

58. Li, Z., Y. Yi, X. Luo, N. Xiong, Y. Liu, S. Li, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, and F. Ye, "Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis," J. Med. Virol., Vol. 92, 1518-1524, 2020.
doi:10.1002/jmv.25727

59. Zhou, Y., L. Zhang, Y. H. Xie, and J. Wu, "Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics," Lab Invest., Vol. 102, 4-13, 2022.
doi:10.1038/s41374-021-00663-w

60. Vega-Magana, N., R. Sanchez-Sanchez, J. Hernandez-Bello, A. A. Venancio-Landeros, M. Pena- Rodriguez, R. A. Vega-Zepeda, B. Galindo-Ornelas, M. Diaz-Sanchez, M. Garcia-Chagollan, G. Macedo-Ojeda, O. P. Garcia-Gonzalez, and J. F. Munoz-Valle, "RT-qPCR assays for rapid detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 mutations: A screening strategy to identify variants with clinical impact," Front Cell Infect Microbiol., Vol. 11, 672562, 2021.
doi:10.3389/fcimb.2021.672562

61. Croxen, M. A., R. J. Law, R. Scholz, K. M. Keeney, M. Wlodarska, and B. B. Finlay, "Recent advances in understanding enteric pathogenic Escherichia coli," Clin. Microbiol. Rev., Vol. 26, 822-880, 2013.
doi:10.1128/CMR.00022-13

62. Pennington, H., "Escherichia coli O157," Lancet, Vol. 376, 1428-1435, 2010.
doi:10.1016/S0140-6736(10)60963-4

63. Song, C., C. Liu, S. Wu, H. Li, H. Guo, B. Yang, S. Qiu, J. Li, L. Liu, H. Zeng, X. Zhai, and Q. Liu, "Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157 H7 in bread, milk and jelly samples," Food Control, Vol. 59, 345-351, 2016.
doi:10.1016/j.foodcont.2015.06.012

64. Pang, B., C. Zhao, L. Li, X. Song, K. Xu, J. Wang, Y. Liu, K. Fu, H. Bao, D. Song, X. Meng, X. Qu, Z. Zhang, and J. Li, "Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection," Anal. Biochem., Vol. 542, 58-62, 2018.
doi:10.1016/j.ab.2017.11.010

65. Zhao, Y., Y. Li, P. Zhang, Z. Yan, Y. Zhou, Y. Du, C. Qu, Y. Song, D. Zhou, S. Qu, and R. Yang, "Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk," Biosens. Bioelectron., Vol. 179, 113057, 2021.
doi:10.1016/j.bios.2021.113057

66. Li, Z., X. Zhang, H. Qi, X. Huang, J. Shi, and X. Zou, "A novel renewable electrochemical biosensor based on mussel-inspired adhesive protein for the detection of Escherichia coli O157 H7 in food," Sens. Actuators B: Chem., Vol. 372, 132601, 2022.
doi:10.1016/j.snb.2022.132601

67. Jo, Y., J. Park, and J. K. Park, "Colorimetric detection of escherichia coli O157: H7 with signal enhancement using size-based filtration on a finger-powered microfluidic device," Sensors (Basel), Vol. 20, No. 8, 2267, 2020.
doi:10.3390/s20082267

68. Sun, Y., C. Kuo, C. Lu, and C. Lin, "Review of recent advances in improved lateral flow immunoassay for the detection of pathogenic Escherichia coli O157 H7 in foods," Journal of Food Safety, Vol. 41, e12867, 2021.
doi:10.1111/jfs.12867

69. Nikoobakht, B. and M. A. El-Sayed, "Surface-enhanced Raman scattering studies on aggregated gold nanorods," J. Phys. Chem. A., Vol. 107, 3372-3378, 2003.
doi:10.1021/jp026770+

70. Farooq, S. and R. E. de Araujo, "Identifying high performance gold nanoshells for singlet oxygen generation enhancement," Photodiagnosis and Photodynamic Therapy, Vol. 35, 102466, 2021.
doi:10.1016/j.pdpdt.2021.102466