1. Ray, S., S. K. Patel, V. Kumar, J. Damahe, and S. Srivastava, "Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures," Proteomics Clin. Appl., Vol. 8, 53-72, 2014.
doi:10.1002/prca.201300074 Google Scholar
2. Tsurusawa, N., J. Chang, M. Namba, D. Makioka, S. Yamura, K. Iha, Y. Kyosei, S. Watabe, T. Yoshimura, and E. Ito, "Modified ELISA for ultrasensitive diagnosis," J. Clin Med., Vol. 10, No. 21, 5197, 2021.
doi:10.3390/jcm10215197 Google Scholar
3. Chen, H., M. Xiao, J. He, Y. Zhang, Y. Liang, H. Liu, and Z. Zhang, "Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer's disease serum biomarker detection," ACS Sens., Vol. 7, 2075-2083, 2022.
doi:10.1021/acssensors.2c00967 Google Scholar
4. Devonshire, A., Y. Gautam, E. Johansson, and T. B. Mersha, "Multi-omics profiling approach in food allergy," World Allergy Organ J., Vol. 16, 100777, 2023.
doi:10.1016/j.waojou.2023.100777 Google Scholar
5. Pei, Y., Y. Tong, H. Li, and J. You, "In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake," J. Hazard Mater., Vol. 427, 128143, 2022.
doi:10.1016/j.jhazmat.2021.128143 Google Scholar
6. Rodriguez, A., F. Burgos-Florez, J. D. Posada, E. Cervera, V. Zucolotto, H. Sanjuan, M. Sanjuan, and P. J. Villalba, "Electrochemical immunosensor for the quantification of S100B at clinically relevant levels using a cysteamine modified surface," Sensors (Basel), Vol. 21, No. 6, 1929, 2021.
doi:10.3390/s21061929 Google Scholar
7. Mao, C., S. Wang, Y. Su, S. Tseng, L. He, A. Wu, R. Roden, J. Xiao, and C. Hung, "Protein detection in blood with single-molecule imaging," Sci. Adv., Vol. 7, eabg6522, 2021.
doi:10.1126/sciadv.abg6522 Google Scholar
8. Ying, L. and Q. Wang, "Microfluidic chip-based technologies emerging platforms for cancer diagnosis," BMC Biotechnology, Vol. 13, 76, 2013.
doi:10.1186/1472-6750-13-76 Google Scholar
9. Dijkstra, M. and R. C. Jansen, "Optimal analysis of complex protein mass spectra," Proteomics., Vol. 9, 3869-3876, 2009.
doi:10.1002/pmic.200701064 Google Scholar
10. Roy, P., C. Truntzer, D. Maucort-Boulch, T. Jouve, and N. Molinari, "Protein mass spectra data analysis for clinical biomarker discovery: A global review," Brief Bioinform., Vol. 12, 176-186, 2011.
doi:10.1093/bib/bbq019 Google Scholar
11. Xu, Z., Y. Jiang, and S. He, "Multi-mode microscopic hyperspectral imager for the sensing of biological samples," Applied Sciences, Vol. 10, No. 14, 4876, 2020.
doi:10.3390/app10144876 Google Scholar
12. Xu, Z., E. Forsberg, Y. Guo, F. Cai, and S. He, "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, No. 10, 2842, 2020.
doi:10.3390/s20102842 Google Scholar
13. Wang, X., P. Wen, Z. G. Sun, C. Y. Xing, and Y. Li, "Combination of chest CT and clinical features for diagnosis of 2019 novel coronavirus pneumonia," Open Med. (Wars), Vol. 15, 723-727, 2020.
doi:10.1515/med-2020-0107 Google Scholar
14. Fang, Y., "Large-scale national screening for coronavirus disease 2019 in China," J. Med. Virol., Vol. 92, 2266-2268, 2020.
doi:10.1002/jmv.26173 Google Scholar
15. McLaughlin, J. B., B. D. Gessner, T. V. Lynn, E. A. Funk, and J. P. Middaugh, "Association of regulatory issues with an echovirus 18 meningitis outbreak at a children's summer camp in Alaska," Pediatr. Infect. Dis. J., Vol. 23, 875-877, 2004.
doi:10.1097/01.inf.0000136867.18026.22 Google Scholar
16. Sampaio, V. V., A. S. O. Melo, A. L. Coleman, F. Yu, S. R. Martins, L. P. Rabello, J. S. Tavares, and K. Nielsen-Saines, "A novel radiologic finding to predict ophthalmic abnormalities in children with congenital Zika syndrome," Pediatric. Infect. Dis. Soc. J., Vol. 10, 730-737, 2021.
doi:10.1093/jpids/piab010 Google Scholar
17. Banerjee, R. and A. Jaiswal, "Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases," Analyst, Vol. 143, 1970-1996, 2018.
doi:10.1039/C8AN00307F Google Scholar
18. Nguyen, V. T., S. Song, S. Park, and C. Joo, "Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay," Biosens. Bioelectron., Vol. 152, 112015, 2020.
doi:10.1016/j.bios.2020.112015 Google Scholar
19. Li, F., M. You, S. Li, J. Hu, C. Liu, Y. Gong, H. Yang, and F. Xu, "Paper-based point-of-care immunoassays: Recent advances and emerging trends," Biotechnol. Adv., Vol. 39, 107442, 2020.
doi:10.1016/j.biotechadv.2019.107442 Google Scholar
20. Huang, X., Z. P. Aguilar, H. Xu, W. Lai, and Y. Xiong, "Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review," Biosens. Bioelectron., Vol. 75, 166-180, 2016.
doi:10.1016/j.bios.2015.08.032 Google Scholar
21. Fu, E., T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager, "Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format," Anal. Chem., Vol. 83, 7941-7946, 2011.
doi:10.1021/ac201950g Google Scholar
22. Di Nardo, F., M. Chiarello, S. Cavalera, C. Baggiani, and L. Anfossi, "Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives," Sensors (Basel), Vol. 21, No. 15, 5185, 2021.
doi:10.3390/s21155185 Google Scholar
23. Rivas, L., A. D. L. Escosura-Muniz, J. Pons, and A. Merkoci, "Lateral flow biosensors based on gold nanoparticles," Gold Nanoparticles in Analytical Chemistry, 569-605, 2014.
doi:10.1016/B978-0-444-63285-2.00014-6 Google Scholar
24. Anfossi, L., F. Di Nardo, A. Russo, S. Cavalera, C. Giovannoli, G. Spano, S. Baumgartner, K. Lauter, and C. Baggiani, "Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens," Anal. Bioanal. Chem., Vol. 411, 1905-1913, 2019.
doi:10.1007/s00216-018-1451-6 Google Scholar
25. Wu, J. L., W. P. Tseng, C. H. Lin, T. F. Lee, M. Y. Chung, C. H. Huang, S. Y. Chen, P. R. Hsueh, and S. C. Chen, "Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2," J. Infect., Vol. 81, 435-442, 2020.
doi:10.1016/j.jinf.2020.06.023 Google Scholar
26. Kim, K., L. Kashefi-Kheyrabadi, Y. Joung, K. Kim, H. Dang, S. G. Chavan, M. H. Lee, and J. Choo, "Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases," Sens. Actuators B: Chem., Vol. 329, 129214, 2021.
doi:10.1016/j.snb.2020.129214 Google Scholar
27. Xiang, T., Z. Jiang, J. Zheng, C. Lo, H. Tsou, G. Ren, J. Zhang, A. Huang, and G. Lai, "A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus," Int. J. Mol. Med., Vol. 30, 1041-1047, 2012.
doi:10.3892/ijmm.2012.1121 Google Scholar
28. Shi, Z., Y. Tian, X. Wu, C. Li, and L. Yu, "A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection," Analytical Methods, Vol. 7, 4957-4964, 2015.
doi:10.1039/C5AY00706B Google Scholar
29. Ganguly, A., T. Ebrahimzadeh, P. Zimmern, N. De Nisco, and S. Prasad, "Label free, lateral flow prostaglandin E2 electrochemical immunosensor for urinary tract infection diagnosis," Chemosensors, Vol. 9, 271, 2021.
doi:10.3390/chemosensors9090271 Google Scholar
30. Li, Z., Y. Wang, J. Wang, Z. Tang, J. G. Pounds, and Y. Lin, "Rapid and sensitive detection of protein biomarker using a portable °uorescence biosensor based on quantum dots and a lateral flow test strip," Analytical Chemistry, Vol. 82, 7008-7014, 2010.
doi:10.1021/ac101405a Google Scholar
31. Fang, B., S. Hua, C.Wang, M. Yuan, Z. Huang, K. Xing, D. Liu, J. Peng, and W. Lai, "Lateral flow immunoassays combining and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads," Food Control, Vol. 98, 268-273, 2019.
doi:10.1016/j.foodcont.2018.11.039 Google Scholar
32. Wang, Y., C. Fill, and S. R. Nugen, "Development of chemiluminescent lateral flow assay for the detection of nucleic acids," Biosensors (Basel), Vol. 2, 32-42, 2012.
doi:10.3390/bios2010032 Google Scholar
33. Park, J. M., H. W. Jung, Y. W. Chang, H. S. Kim, M. J. Kang, and J. C. Pyun, "Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity," Anal. Chim. Acta., Vol. 853, 360-367, 2015.
doi:10.1016/j.aca.2014.10.011 Google Scholar
34. Khlebtsov, B. and N. Khlebtsov, "Surface-enhanced Raman scattering-based lateral-flow immunoassay," Nanomaterials (Basel), Vol. 10, No. 11, 2228, 2020.
doi:10.3390/nano10112228 Google Scholar
35. Gunawardhana, L., K. Kourentzi, A. Danthanarayana, J. Brgoch, X. Shan, R. Willson, and W. Shih, "SERS-based ultrasensitive lateral flow assay for quantitative sensing of protein biomarkers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, 6900608, 2021. Google Scholar
36. Chen, S., L. Meng, L. Wang, X. Huang, S. Ali, X. Chen, M. Yu, M. Yi, L. Li, X. Chen, L. Yuan, W. Shi, and G. Huang, "SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags," Sens. Actuators B: Chem., Vol. 348, 130706, 2021.
doi:10.1016/j.snb.2021.130706 Google Scholar
37. Tran, V., B. Walkenfort, M. Konig, M. Salehi, and S. Schlucker, "Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry," Angew. Chem. Int. Ed. Engl., Vol. 58, 442-446, 2019.
doi:10.1002/anie.201810917 Google Scholar
38. Sloan-Dennison, S., E. O'Connor, J. W. Dear, D. Graham, and K. Faulds, "Towards quantitative point of care detection using SERS lateral flow immunoassays," Anal. Bioanal. Chem., Vol. 414, 4541-4549, 2022.
doi:10.1007/s00216-022-03933-8 Google Scholar
39. Lia, Y., S. Tang, W. Zhang, X. Cui, Y. Zhang, Y. Jin, X. Zhang, and Y. Chen, "A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk," Sens. Actuators B: Chem., Vol. 282, 703-711, 2019.
doi:10.1016/j.snb.2018.11.050 Google Scholar
40. Jones, R. R., D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, "Raman techniques: Fundamentals and frontiers," Nanoscale Res. Lett., Vol. 14, 231, 2019.
doi:10.1186/s11671-019-3039-2 Google Scholar
41. Ando, J. and K. Fujita, "Metallic nanoparticles as SERS agents for biomolecular imaging," Current Pharmaceutical Biotechnology, Vol. 14, 141-149, 2013. Google Scholar
42. Bantz, K. C., A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh, and C. L. Haynes, "Recent progress in SERS biosensing," Phys. Chem. Chem. Phys., Vol. 13, 11551-11567, 2011.
doi:10.1039/c0cp01841d Google Scholar
43. Chen, R., X. Du, Y. Cui, X. Zhang, Q. Ge, J. Dong, and X. Zhao, "Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags," Small, Vol. 16, e2002801, 2020.
doi:10.1002/smll.202002801 Google Scholar
44. Fu, X., Z. Cheng, J. Yu, P. Choo, L. Chen, and J. Choo, "A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA," Biosens. Bioelectron., Vol. 78, 530-537, 2016.
doi:10.1016/j.bios.2015.11.099 Google Scholar
45. Zhang, W., S. Tang, Y. Jin, C. Yang, L. He, J. Wang, and Y. Chen, "Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines," J. Hazard Mater., Vol. 393, 122348, 2020.
doi:10.1016/j.jhazmat.2020.122348 Google Scholar
46. He, D., Z. Wu, B. Cui, and E. Xu, "Dual-mode aptasensor for SERS and Chiral detection of campylobacter jejuni," Food Analytical Methods, Vol. 12, 2185-2193, 2019.
doi:10.1007/s12161-019-01574-9 Google Scholar
47. Su, L., H. Hu, Y. Tian, C. Jia, L. Wang, H. Zhang, J. Wang, and D. Zhang, "Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte," Anal. Chem., Vol. 93, 8362-8369, 2021.
doi:10.1021/acs.analchem.1c01487 Google Scholar
48. Liu, B., S. Zheng, Q. Liu, B. Gao, X. Zhao, and F. Sun, "SERS-based lateral flow immunoassay strip for ultrasensitive and quantitative detection of acrosomal protein SP10," Microchemical Journal, Vol. 175, 107191, 2022.
doi:10.1016/j.microc.2022.107191 Google Scholar
49. He, W., M. Wang, M. Li, Z. Zhong, H. Chen, S. Xi, Z. Luan, C. Li, and X. Zhang, "Confocal Raman microscopy for assessing effects of preservation methods on symbiotic deep-sea mussel gills," Frontiers in Marine Science, Vol. 9, 2022. Google Scholar
50. Hu, C., X. Wang, L. Liu, C. Fu, K. Chu, and Z. J. Smith, "Fast confocal Raman imaging via context-aware compressive sensing," The Analyst, Vol. 146, 2348-2357, 2021.
doi:10.1039/D1AN00088H Google Scholar
51. Guo, T., Z. Lin, X. Xu, Z. Zhang, X. Chen, N. He, G. Wang, Y. Jin, J. Evans, and S. He, "Dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
doi:10.2528/PIER23030703 Google Scholar
52. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702 Google Scholar
53. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504 Google Scholar
54. Paddock, S., "Principles and practices of laser scanning confocal microscopy," Molecular Biotechnology, Vol. 16, 127-149, 2000.
doi:10.1385/MB:16:2:127 Google Scholar
55. Vos, T., A. D. Flaxman, M. Naghavi, R. Lozano, C. Michaud, and M. Ezzati, "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990{2010: A systematic analysis for the Global Burden of Disease Study 2010," Lancet, Vol. 380, 2163-2196, 2012.
doi:10.1016/S0140-6736(12)61729-2 Google Scholar
56. Park, S. W., D. M. Cornforth, J. Dushoff, and J. S. Weitz, "The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak," Epidemics, Vol. 31, 100392, 2020.
doi:10.1016/j.epidem.2020.100392 Google Scholar
57. Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia," N. Engl. J. Med., Vol. 382, 1199-1207, 2020.
doi:10.1056/NEJMoa2001316 Google Scholar
58. Li, Z., Y. Yi, X. Luo, N. Xiong, Y. Liu, S. Li, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, and F. Ye, "Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis," J. Med. Virol., Vol. 92, 1518-1524, 2020.
doi:10.1002/jmv.25727 Google Scholar
59. Zhou, Y., L. Zhang, Y. H. Xie, and J. Wu, "Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics," Lab Invest., Vol. 102, 4-13, 2022.
doi:10.1038/s41374-021-00663-w Google Scholar
60. Vega-Magana, N., R. Sanchez-Sanchez, J. Hernandez-Bello, A. A. Venancio-Landeros, M. Pena- Rodriguez, R. A. Vega-Zepeda, B. Galindo-Ornelas, M. Diaz-Sanchez, M. Garcia-Chagollan, G. Macedo-Ojeda, O. P. Garcia-Gonzalez, and J. F. Munoz-Valle, "RT-qPCR assays for rapid detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 mutations: A screening strategy to identify variants with clinical impact," Front Cell Infect Microbiol., Vol. 11, 672562, 2021.
doi:10.3389/fcimb.2021.672562 Google Scholar
61. Croxen, M. A., R. J. Law, R. Scholz, K. M. Keeney, M. Wlodarska, and B. B. Finlay, "Recent advances in understanding enteric pathogenic Escherichia coli," Clin. Microbiol. Rev., Vol. 26, 822-880, 2013.
doi:10.1128/CMR.00022-13 Google Scholar
62. Pennington, H., "Escherichia coli O157," Lancet, Vol. 376, 1428-1435, 2010.
doi:10.1016/S0140-6736(10)60963-4 Google Scholar
63. Song, C., C. Liu, S. Wu, H. Li, H. Guo, B. Yang, S. Qiu, J. Li, L. Liu, H. Zeng, X. Zhai, and Q. Liu, "Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157 H7 in bread, milk and jelly samples," Food Control, Vol. 59, 345-351, 2016.
doi:10.1016/j.foodcont.2015.06.012 Google Scholar
64. Pang, B., C. Zhao, L. Li, X. Song, K. Xu, J. Wang, Y. Liu, K. Fu, H. Bao, D. Song, X. Meng, X. Qu, Z. Zhang, and J. Li, "Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection," Anal. Biochem., Vol. 542, 58-62, 2018.
doi:10.1016/j.ab.2017.11.010 Google Scholar
65. Zhao, Y., Y. Li, P. Zhang, Z. Yan, Y. Zhou, Y. Du, C. Qu, Y. Song, D. Zhou, S. Qu, and R. Yang, "Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk," Biosens. Bioelectron., Vol. 179, 113057, 2021.
doi:10.1016/j.bios.2021.113057 Google Scholar
66. Li, Z., X. Zhang, H. Qi, X. Huang, J. Shi, and X. Zou, "A novel renewable electrochemical biosensor based on mussel-inspired adhesive protein for the detection of Escherichia coli O157 H7 in food," Sens. Actuators B: Chem., Vol. 372, 132601, 2022.
doi:10.1016/j.snb.2022.132601 Google Scholar
67. Jo, Y., J. Park, and J. K. Park, "Colorimetric detection of escherichia coli O157: H7 with signal enhancement using size-based filtration on a finger-powered microfluidic device," Sensors (Basel), Vol. 20, No. 8, 2267, 2020.
doi:10.3390/s20082267 Google Scholar
68. Sun, Y., C. Kuo, C. Lu, and C. Lin, "Review of recent advances in improved lateral flow immunoassay for the detection of pathogenic Escherichia coli O157 H7 in foods," Journal of Food Safety, Vol. 41, e12867, 2021.
doi:10.1111/jfs.12867 Google Scholar
69. Nikoobakht, B. and M. A. El-Sayed, "Surface-enhanced Raman scattering studies on aggregated gold nanorods," J. Phys. Chem. A., Vol. 107, 3372-3378, 2003.
doi:10.1021/jp026770+ Google Scholar
70. Farooq, S. and R. E. de Araujo, "Identifying high performance gold nanoshells for singlet oxygen generation enhancement," Photodiagnosis and Photodynamic Therapy, Vol. 35, 102466, 2021.
doi:10.1016/j.pdpdt.2021.102466 Google Scholar