Vol. 120
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-14
2-Port High Gain Millimeter-Wave MIMO Antenna for 5G Applications
By
Progress In Electromagnetics Research M, Vol. 120, 15-27, 2023
Abstract
In order to improve the distance of 5th Generation (5G) Mobile Communication Technology) millimeter-wave outdoor point-to-point relay transmission, a 2-port Multiple Input Multiple Output (MIMO) antenna with high gain and low sidelobe level characteristics is designed at 39 GHz. The antenna is designed using the Taylor synthesis method and slotting technology to increase the antenna gain and lower the sidelobe level. Loading hollow T-shaped branches reduces the mutual coupling between MIMO antennas. The measured results are basically in line with the simulation ones. The results show that the bandwidth of the antenna is 38.1 ~ 39.3 GHz; the isolation degree is more than 50 dB; the antenna gain is 25.75 dBi at 39 GHz; the E-plane and H-plane sidelobe levels are -20.5 dB and -20 dB, respectively. Furthermore, the Envelope Correlation Coefficient (ECC) is less than 0.022; the Diversity Gain (DG) is more than 9.89; and the radiation efficiency reaches 90% in the working frequency band. Therefore, this antenna can be used as a long-distance relay antenna in 5G millimeter-wave communication system with high gain and low sidelobe level characteristics based on meeting the requirements of the MIMO antenna.
Citation
Mingming Gao, Hongliang Niu, Jing Chang Nan, Wen Hui Liu, and Chun Li Liu, "2-Port High Gain Millimeter-Wave MIMO Antenna for 5G Applications," Progress In Electromagnetics Research M, Vol. 120, 15-27, 2023.
doi:10.2528/PIERM23080707
References

1. Raheel, K., A. Altaf, A. Waheed, S. H. Kiani, D. A. Sehrai, F. Tubbal, and R. Raad, "E-shaped H-slotted dual band mmWave antenna for 5G technology," Electronics, Vol. 10, No. 1, 1019, 2021.
doi:10.3390/electronics10091019

2. Zhu, X., "Study on the propagation characteristics of outdoor microcell millimeter wave 39 GHz," Nanjing University of Posts And Telecommunications, 2018.

3. Yang, T., X. Yuan, and I. B. Collings, "Reduced-dimension cooperative precoding for MIMO two-way relay channels," IEEE Transactions on Wireless Communications, Vol. 11, No. 11, 4150-4160, 2012.
doi:10.1109/TWC.2012.092112.120345

4. Xu, S. and Y. Hua, "Optimal design of spatial source-and-relay matrices for a non-regenerative two-way MIMO relay system," IEEE Transactions on Wireless Communications, Vol. 10, No. 5, 1645-1655, 2011.
doi:10.1109/TWC.2011.030911.101173

5. Vaze, R. and R. W. Heath, "On the capacity and diversity-multiplexing tradeoff of the two-way relay channel," IEEE Transactions on Information Theory, Vol. 57, No. 5, 4219-4234, 2011.
doi:10.1109/TIT.2011.2146710

6. Gao, M. M., Y. Song, J. C. Nan, et al. "Research of a compact UWB-MIMO antenna with X band-rejected," Journal of Electronic Measurement and Instrumentation, Vol. 36, No. 1, 149-156, 2022.

7. Nan, J. C., X. X. Han, M. M. Gao, et al. "Design of miniaturized UWB-MIMO antenna based on DGS," Journal of Electronic Measurement and Instrumentation, Vol. 36, No. 5, 89-95, 2022.

8. Ali, W., S. Das, H. Medkour, et al. "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Technologies, Vol. 27, No. 1, 283-292, 2021.
doi:10.1007/s00542-020-04951-1

9. Ali, M., L. E. G. Munoz, G. Carpintero, S. Nellen, and B. Globisch, "Millimetre-wave photonic emitter integrating a PIN-PD and planar high gain antenna," Proceedings of the IEEE Third International Workshop on Mobile Terahertz Systems (IWMTS), 1-5, Essen, Germany, July 2020.

10. Gao, F. L., J. Feng, C. Liao, et al. "Design of planar antenna array with broad beamwidth at 24 GHz," Electronic Measurement Technology, Vol. 42, No. 1, 112-115, 2019.

11. Li, Y. J., H. Sun, X. X. Yang, et al. "28 GHz microstrip array antenna with CSRR," Electronic Measurement Technology, Vol. 41, No. 18, 80-84, 2018.

12. Khalid, M., S. I. Naqvi, N. Hussain, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

13. Manan, A., S. I. Naqvi, M. A. Azam, et al. "MIMO antenna array for mm-wave 5G smart devices," 2019 22nd International Multitopic Conference (INMIC), 1-5, Islamabad, Pakistan, 2019.

14. Khan, J., S. Ullah, U. Ali, et al. "Design of a millimeter-wave MIMO antenna array for 5G communication terminals," Sensors, Vol. 22, No. 7, 2768, 2022.
doi:10.3390/s22072768

15. Wu, D., "76-81 GHz planar antenna development and utilization for automotive radar applications,", M.S. Thesis, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden, 2016.

16. Wang, J., Y. N. Zheng, and Z. Y. He, Antenna Array Theory and Engineering Applications, Publishing House of Electronics Industry, 2015.

17. Zhang, L., W. Zhang, and Y. P. Zhang, "Microstrip grid and comb array antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4077-4084, 2011.
doi:10.1109/TAP.2011.2164216

18. Zhang, Q., L. Wang, and X. Zhang, "Millimeter-wave microstrip comb-line antenna array for automotive radar," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-3, Hangzhou, China, December 2018.

19. Tariq, S., S. I. Naqvi, N. Hussain, et al. "A metasurface-based MIMO antenna for 5G millimeter-wave applications," IEEE Access, Vol. 9, 51805-51817, 2021.
doi:10.1109/ACCESS.2021.3069185

20. Subitha, D., S. Velmurugan, M. V. Lakshmi, et al. "Development of Rogers RT/Duroid 5880 substrate-based MIMO antenna array for automotive radar applications," Advances in Materials Science and Engineering, Vol. 2022, 4319549, 2022.

21. Zhou, X., H. Zhai, L. Xi, et al. "A low-profile four-element MIMO antenna array with new decoupling structures," Microwave and Optical Technology Letters, Vol. 60, No. 10, 2511-2516, 2018.
doi:10.1002/mop.31359

22. Tsao, Y. F., A. Desai, and H. T. Hsu, "Dual-band and dual-polarization CPW Fed MIMO antenna for fifth-generation mobile communications technology at 28 and 38 GHz," IEEE Access, Vol. 10, 46853-46863, 2022.
doi:10.1109/ACCESS.2022.3171248