1. Paz, H. P., V. S. Silva, E. V. Cambero, H. X. Araujo, I. R. Casella, and C. E. Capovilla, "A survey on low power RF rectifiers efficiency for low-cost energy harvesting applications," AEU --- International Journal of Electronics and Communications, Vol. 112, 52963, 2021. Google Scholar
2. Caselli, M., M. Ronchi, and A. Boni, "Power management circuits for low-power RF energy harvesters," Journal of Low Power Electronics and Applications, Vol. 10, 29, 2020.
doi:10.3390/jlpea10030029 Google Scholar
3. Divakaran, S. K. and D. D. Krishna, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21633, 2019.
doi:10.1002/mmce.21633 Google Scholar
4. Hesham, R., A. Soltan, and A. Madian, "Energy harvesting schemes for wearable devices," AEU --- International Journal of Electronics and Communications, Vol. 138, 153888, 2021.
doi:10.1016/j.aeue.2021.153888 Google Scholar
5. Gao, M., C. Su, J. Cong, F. Yang, Y. Wang, and P. Wang, "Harvesting thermoelectric energy from railway track," Energy, Vol. 180, 315-329, 2019.
doi:10.1016/j.energy.2019.05.087 Google Scholar
6. Silva-Leon, J., A. Cioncolini, M. R. Nabawy, A. Revell, and A. Kennaugh, "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Vol. 239, 846-858, 2019.
doi:10.1016/j.apenergy.2019.01.246 Google Scholar
7. Gaur, A., S. Tiwari, C. Kumar, and P. Maiti, "Polymer biowaste hybrid for enhanced piezoelectric energy harvesting," ACS Applied Electronic Materials, Vol. 2, 1426-1432, 2020.
doi:10.1021/acsaelm.0c00197 Google Scholar
8. Surender, D., T. Khan, F. A. Talukdar, A. De, Y. M. Antar, and A. P. Freundorfer, "Key components of rectenna system: A comprehensive survey," IETE Journal of Research, Vol. 68, 3379-3405, 2022.
doi:10.1080/03772063.2020.1761268 Google Scholar
9. Ibrahim, H. H., M. J. Singh, S. S. Al-Bawri, S. K. Ibrahim, M. T. Islam, A. Alzamil, and M. S. Islam, "Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications," Sensors, Vol. 22, 4144, 2022.
doi:10.3390/s22114144 Google Scholar
10. Ahmad, A., A. Ullah, C. Feng, M. Khan, S. Ashraf, M. Adnan, S. Nazir, and H. U. Khan, "Towards an improved energy efficient and end-to-end secure protocol for IoT healthcare applications," Security and Communication Networks, 1-10, 2020. Google Scholar
11. Muncuk, U., K. Alemdar, J. D. Sarode, and K. R. Chowdhury, "Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT," IEEE Internet of Things Journal, Vol. 5, 2700-2714, 2018.
doi:10.1109/JIOT.2018.2813162 Google Scholar
12. Ashraf, S., T. Ahmed, and S. Saleem, "NRSM: Node redeployment shrewd mechanism for wireless sensor network," Iran Journal of Computer Science, Vol. 4, 171-183, 2021.
doi:10.1007/s42044-020-00075-x Google Scholar
13. Khan, D., S. J. Oh, S. Yeo, Y. Ryu, S. In, R. E. Rad, I. Ali, Y. G. Pu, S. Yoo, M. Lee, and K. C. Hwang, "A solar/triboelectric/RF hybrid energy harvesting based high efficiency wireless power receiver," IEEE Transactions on Power Electronics, Vol. 36, 11148-11162, 2021.
doi:10.1109/TPEL.2021.3071374 Google Scholar
14. Gaidhane, V. H., A. Mir, and V. Goyal, "Energy harvesting from far field RF signals," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21612, 2019.
doi:10.1002/mmce.21612 Google Scholar
15. Boopathi, C. S., M. Sivaram, T. V. P. Sundararajan, R. Maheswar, P. Yupapin, and I. S. Amiri, "Bandenna for RF energy harvesting and flexible electronics," Microsystem Technologies, Vol. 27, 1857-1861, 2021.
doi:10.1007/s00542-021-05212-5 Google Scholar
16. Mohan, A. and S. Mondal, "An impedance matching strategy for micro-scale RF energy harvesting systems," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, 1458-1462, 2020.
doi:10.1109/TCSII.2020.3036850 Google Scholar
17. Churchill, K. K. P., G. Chong, H. Ramiah, M. Y. Ahmad, and J. Rajendran, "Low-voltage capacitive-based step-up DC-DC converters for RF energy harvesting system: A review," IEEE Access, Vol. 8, 186393-186407, 2020.
doi:10.1109/ACCESS.2020.3028856 Google Scholar
18. Koohestani, M., J. Tissier, and M. Latrach, "A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz," AEU --- International Journal of Electronics and Communications, Vol. 127, 153478, 2020.
doi:10.1016/j.aeue.2020.153478 Google Scholar
19. Shi, Y., J. Jing, Y. Fan, L. Yang, and M. Wang, "Design of a novel compact and efficient rectenna for WiFi energy harvesting," Progress In Electromagnetics Research C, Vol. 83, 57-70, 2018.
doi:10.2528/PIERC18012803 Google Scholar
20. Meher, P., S. K. Mishra, and M. A. Halimi, "A low-profile compact broadband CP DRA for RF energy harvesting applications," IETE Journal of Research, 1-9, 2023.
doi:10.1080/03772063.2023.2237469 Google Scholar
21. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 956-959, 2018.
doi:10.1109/LAWP.2018.2825783 Google Scholar
22. El Mattar, S., A. Baghdad, and A. Ballouk, "A 2.45/5.8 GHz high-efficiency dual-band rectifier for low radio frequency input power," International Journal of Electrical and Computer Engineering, Vol. 12, 2169, 2022. Google Scholar
23. Dardeer, O. M., H. A. Elsadek, E. A. Abdallah, and H. M. Elhennawy, "A dual band circularly polarized rectenna for RF energy harvesting applications," The Applied Computational Electromagnetics Society Journal (ACES), 1594-1600, 2019. Google Scholar
24. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "A quad-band antenna for multiband radio frequency energy harvesting circuit," AEU --- International Journal of Electronics and Communications, Vol. 85, 99-107, 2018.
doi:10.1016/j.aeue.2017.12.035 Google Scholar
25. Selim, K. K., S. Wu, D. A. Saleeb, and S. S. Ghoneim, "A quad-band RF circuit for enhancement of energy harvesting," Electronics, Vol. 10, 1160, 2021.
doi:10.3390/electronics10101160 Google Scholar
26. Keshavarz, R. and N. Shariati, "Highly sensitive and compact quad-band ambient RF energy harvester," IEEE Transactions on Industrial Electronics, Vol. 69, 3609-3621, 2021.
doi:10.1109/TIE.2021.3075888 Google Scholar
27. Behera, B. R., P. Srikanth, P. R. Meher, and S. K. Mishra, "A compact broadband circularly polarized printed monopole antenna using twin parasitic conducting strips and rectangular metasurface for RF energy harvesting application," AEU --- International Journal of Electronics and Communications, Vol. 120, 153233, 2020.
doi:10.1016/j.aeue.2020.153233 Google Scholar
28. Behera, B. R., P. R. Meher, and S. K. Mishra, "Metasurface superstrate inspired printed monopole antenna for RF energy harvesting application," Progress In Electromagnetics Research C, Vol. 110, 119-133, 2021.
doi:10.2528/PIERC21011405 Google Scholar
29. SMS7630 SERIES, Skyworks Solutions, 2021, Available online: https://www.skyworksinc.com/media/SkyWorks/Documents/Products/201-300/Surface Mount Schottky Diodes 200041AG.pdf.
doi:10.2528/PIERC21011405 Google Scholar
30. Mansour, M. M. and H. Kanaya, "Novel L-slot matching circuit integrated with circularly polarized rectenna for wireless energy harvesting," Electronics, Vol. 8, 651, 2019.
doi:10.3390/electronics8060651 Google Scholar
31. Mehta, P., A. Nella, and M. Rajagopal, "An RF energy harvesting system at 5.5 GHz for WLAN networks," Proceedings of the 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 750-753, Jaipur, Rajasthan, India, December 2021.
doi:10.1109/InCAP52216.2021.9726392 Google Scholar
32. Tafekirt, H., J. Pelegri-Sebastia, A. Bouajaj, and B. M. Reda, "A sensitive triple-band rectifier for energy harvesting applications," IEEE Access, Vol. 8, 73659-73664, 2020.
doi:10.1109/ACCESS.2020.2986797 Google Scholar
33. Muhammad, S., J. J. Tiang, S. K. Wong, A. Iqbal, A. Smida, and M. K. Azizi, "A compact dual-port multi-band rectifier circuit for RF energy harvesting," Comput. Mater. Continua, Vol. 68, 167-184, 2021.
doi:10.32604/cmc.2021.016133 Google Scholar
34. Kim, J. and I. Kwon, "Design of a high-efficiency DC-DC Boost converter for RF energy harvesting IoT sensors," Sensors, Vol. 22, 10007, 2022.
doi:10.3390/s222410007 Google Scholar
35. LTC3108, Ultralow Voltage Step-Up Converter, and Power Manager, Analog Device, Available online: https://www.analog.com/media/en/technical-documentation/datasheets/LTC3108.pdf. Google Scholar
36. Chen, X., L. Huang, J. Xing, Z. Shi, and Z. Xie, "Energy harvesting system and circuits for ambient WiFi energy harvesting," Proceedings of the 2017 12th International Conference on Computer Science and Education (ICCSE), 769-772, Houston, TX, USA, August 22-25, 2017. Google Scholar
37. Pinto, D., A. Arun, S. Lenka, L. Colaco, S. Khanolkar, S. Betgeri, and A. Naik, "Design and performance evaluation of a WiFi energy harvester for energizing low power devices," Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), 1-8, Jeju, Korea, August 23-25, 2021. Google Scholar
38. Di Marco, P., V. Stornelli, G. Ferri, L. Pantoli, and A. Leoni, "Dual band harvester architecture for autonomous remote sensors," Sensors and Actuators A: Physical, Vol. 247, 598-603, 2016.
doi:10.1016/j.sna.2016.06.040 Google Scholar