Vol. 120
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-26
Wearable Dual-Band Frequency Reconfigurable Patch Antenna for WBAN Applications
By
Progress In Electromagnetics Research M, Vol. 120, 95-111, 2023
Abstract
A wearable dual-band patch antenna is presented, which can adjust its frequency for WBAN applications. Frequency reconfiguration is achieved by the antenna through the utilization of the switching properties of a PIN diode. Produced using a Rogers Duroid material with semi-flexible properties, the antenna has a size of 0.33λ0 × 0.35λ0 × 0.012λ0. Initially resonating at 5.8 GHz, a slot in the shape of an inverted letter U is included to introduce a dual-band operation at 2.4 GHz. By controlling the PIN diode's ON and OFF states, the antenna can switch between single-band (ISM 5.8 GHz) and dual-band (ISM 2.4 GHz and 5.8 GHz) operations. The antenna exhibits a bi-directional radiation pattern at 2.4 GHz and a directional pattern at 5.8 GHz. In the ON state, the antenna achieves a peak gain and total efficiency of 4.84 dBi, 5.87 dBi, 92.5%, and 92.7% at 2.4 GHz and 5.8 GHz, respectively. In the OFF state at 5.8 GHz, a peak gain and total efficiency of 6.01 dBi and 91.8% are measured. To evaluate its suitability for WBAN applications, the antenna's performance is assessed by measuring SAR values on a human tissue model. At 2.4 GHz, the SAR values for 1/10 g of human tissue are 0.411/0.177 W/kg respectively. Similarly, at 5.8 GHz, the SAR values are 0.438/0.158 W/kg respectively. The SAR values comply with the established standards of the FCC and ICNIRP for both resonance frequencies for human tissue weighing 1/10 g. Overall, the antenna boasts a compact size, acceptable SAR values, and satisfactory gain and efficiency across all operating bands, surpassing previous works. It also benefits from a simplified design employing a single switch, and the antenna remains a suitable choice for WBAN applications considering its other advantageous characteristics mentioned above.
Citation
Umar Musa, Shaharil Mohd Shah, Huda Bin Abdul Majid, Mohamad Kamal Abd Rahim, Muhammad Sani Yahya, Zainab Yunusa, Abubakar Salisu, and Zuhairiah Zainal Abidin, "Wearable Dual-Band Frequency Reconfigurable Patch Antenna for WBAN Applications," Progress In Electromagnetics Research M, Vol. 120, 95-111, 2023.
doi:10.2528/PIERM23060705
References

1. Yaghoubi, M., K. Ahmed, and Y. Miao, "Wireless Body Area Network (WBAN): A survey on architecture, technologies, energy consumption, and security challenges," J. Sens. Actuator Networks, Vol. 11, No. 4, 2022.        Google Scholar

2. Monirujjaman Khan, M., J. Hossain, K. Islam, N. S. Ovi, M. N. A. Shovon, M. I. Abbasi, and S. Bourouis, "Design and study of an mmwave wearable textile based compact antenna for healthcare applications," Int. J. Antennas Propag., Vol. 2021, 6506128, 2021.        Google Scholar

3. Li, Y., L. Zheng, and X. Wang, "Flexible and wearable healthcare sensors for visual reality health-monitoring," Virtual Real. Intell. Hardw., Vol. 1, No. 4, 411-427, 2019.
doi:10.1016/j.vrih.2019.08.001        Google Scholar

4. Zhu, X.-Q., Y.-X. Guo, and W. Wu, "A compact dual-band antenna for wireless body-area network applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 98-101, 2016.
doi:10.1109/LAWP.2015.2431822        Google Scholar

5. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band composite right/left-handed waveguide textile antenna for WLAN applications," Electron. Lett., Vol. 50, No. 6, 424-426, 2014.
doi:10.1049/el.2013.3529        Google Scholar

6. Savci, H. and F. Kaburcuk, "FDTD-based SAR calculation of a wearable antenna for wireless body area network devices," Int. J. Microw. Wirel. Technol., 1-7, 2022.
doi:10.1017/S1759078722001283        Google Scholar

7. Soh, P. J., G. Vandenbosch, S. L. Ooi, and N. Husna, "Wearable dual-band Sierpinski fractal PIFA using conductive fabric," Electron. Lett., Vol. 47, 365-367, 2011.
doi:10.1049/el.2010.3525        Google Scholar

8. Ge, L. and K.-M. Luk, "Frequency-reconfigurable low-profile circular monopolar patch antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3443-3449, 2014.
doi:10.1109/TAP.2014.2318077        Google Scholar

9. Dang, Q. H., S. J. Chen, D. C. Ranasinghe, and C. Fumeaux, "A frequency-reconfigurable wearable textile antenna with one-octave tuning range," IEEE Trans. Antennas Propag., Vol. 69, No. 12, 8080-8089, 2021.
doi:10.1109/TAP.2021.3083826        Google Scholar

10. Puskely, J., M. Pokorny, J. Lacik, and Z. K. Raida, "Wearable disc-like antenna for body-centric communications at 61 GHz," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1490-1493, 2015.
doi:10.1109/LAWP.2014.2367812        Google Scholar

11. Musavand, A., Y. Zehforoosh, H. Ojaroudi, and N. Ojaroudi, "A compact UWB slot antenna with reconfigurable band-notched function for multimode applications," Appl. Comput. Electromagn. Soc. J., Vol. 31, No. 1, 14-18, 2016.        Google Scholar

12. Shah, S. M., M. F. M. Daud, Z. Z. Abidin, F. C. Seman, S. A. Hamzah, N. Katiran, and F. Zubir, "Frequency reconfiguration mechanism of a PIN diode on a reconfigurable antenna for LTE and WLAN applications," Int. J. Electr. Comput. Eng., Vol. 8, No. 3, 1893-1902, 2018.        Google Scholar

13. Tawk, Y., J. Costantine, and C. G. Christodoulou, "A varactor-based reconfigurable filtenna," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 716-719, 2012.
doi:10.1109/LAWP.2012.2204850        Google Scholar

14. Ramli, M., M. Z. Abd Aziz, M. A. Othman, H. Nornikman, M. Azizi, S. Azlan, A. Dahalan, and H. Sulaiman, "Design of Sierpinski gasket fractal antenna with slits for multiband application," J. Teknol., Vol. 78, 123-128, 2016.        Google Scholar

15. Yang, S., C. Zhang, H. K. Pan, A. E. Fathy, and V. K. Nair, "Frequency-reconfigurable antennas for multiradio wireless platforms," IEEE Microw. Mag., Vol. 10, No. 1, 63-66, Feb. 2009.        Google Scholar

16. Shah, I. A., S. Hayat, A. Basir, M. Zada, S. A. A. Shah, S. Ullah, and S. Ullah, "Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication," AEU --- Int. J. Electron. Commun., Vol. 98, 80-88, 2019.
doi:10.1016/j.aeue.2018.10.012        Google Scholar

17. Ismail, M. F., M. K. A. Rahim, M. R. Hamid, H. A. Majid, A. H. Omar, L. O. Nur, and B. S. Nugroho, "Dual-band pattern reconfigurable antenna using electromagnetic band-gap structure," AEU --- Int. J. Electron. Commun., Vol. 130, 153571, 2021.
doi:10.1016/j.aeue.2020.153571        Google Scholar

18. Reji, V. and C. T. Manimegalai, "V-shaped long wire frequency reconfigurable antenna for WLAN and ISM band applications," AEU --- Int. J. Electron. Commun., Vol. 140, 153937, 2021.
doi:10.1016/j.aeue.2021.153937        Google Scholar

19. Pant, A., L. Kumar, R. D. Gupta, and M. S. Parihar, "Investigation on non-linear aspects of pattern reconfigurable hexagon shaped planar loop antenna," IET Microwaves, Antennas Propag., Vol. 13, No. 8, 1158-1165, 2019.
doi:10.1049/iet-map.2018.5344        Google Scholar

20. Rahmani, F., N. Touhami, A. Kchairi, and N. Taher, "Circular planar antenna with reconfigurable radiation pattern using PIN diodes,", Vol. 46, 760-765, 2020.        Google Scholar

21. Palsokar, A. A. and S. L. Lahudkar, "Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode," AEU --- Int. J. Electron. Commun., Vol. 125, 153370, 2020.
doi:10.1016/j.aeue.2020.153370        Google Scholar

22. Jin, G., L. Li, and W. Wang, "A wideband polarization reconfigurable antenna based on optical switches and C-shaped radiator," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, May 2019.        Google Scholar

23. Kovitz, J. M., H. Rajagopalan, Y. Rahmat-Samii, and , "Design and implementation of broadband MEMS RHCP/LHCP reconfigurable arrays using rotated E-shaped patch elements," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2497-2507, Jun. 2015.
doi:10.1109/TAP.2015.2417892        Google Scholar

24. Hu, Z., S. Wang, Z. Shen, and W. Wu, "Broadband polarization-reconfigurable water spiral antenna of low profile," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1377-1380, 2017.
doi:10.1109/LAWP.2016.2636923        Google Scholar

25. George, U. and F. Lili, "A simple frequency and polarization reconfigurable antenna," Electromagnetics, Vol. 40, No. 6, 435-444, 2020.
doi:10.1080/02726343.2020.1811940        Google Scholar

26. Chen, S., D. Ranasinghe, and C. Fumeaux, "A robust snap-on button solution for reconfigurable wearable textile antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4541-4551, 2018.
doi:10.1109/TAP.2018.2851288        Google Scholar

27. Hussain, N., W. A. Awan, S. I. Naqvi, A. Ghaffar, A. Zaidi, S. A. Naqvi, A. Iftikhar, and X. J. Li, "A compact flexible frequency reconfigurable antenna for heterogeneous applications," IEEE Access, Vol. 8, 173298-173307, 2020.
doi:10.1109/ACCESS.2020.3024859        Google Scholar

28. Salleh, S. M., M. Jusoh, A. H. Ismail, M. R. Kamarudin, P. Nobles, M. K. A. Rahim, T. Sabapathy, M. N. Osman, M. I. Jais, and P. J. Soh, "Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN," IEEE Access, Vol. 6, 7350-7358, 2017.        Google Scholar

29. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558        Google Scholar

30. Kanagasabai, M., P. Sambandam, G. N. A. Mohammed, N. M. Dinesh, M. S. Morais, A. Viswanathan, S. K. Palaniswamy, and A. Shrivast, "On the design of frequency reconfigurable tri-band miniaturized antenna for WBAN applications," AEU --- Int. J. Electron. Commun., Vol. 127, 153450, 2020.
doi:10.1016/j.aeue.2020.153450        Google Scholar

31. Sandeep, D. R., N. Prabakaran, B. T. P. Madhav, K. L. Narayana, and Y. P. Reddy, "Semicircular shape hybrid reconfigurable antenna on Jute textile for ISM, Wi-Fi, Wi-MAX, and W-LAN applications," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 11, e22401, 2020.        Google Scholar

32. Ahmad, A., F. Faisal, S. Ullah, and D.-Y. Choi, "Design and SAR analysis of a dual band wearable antenna for WLAN applications," Appl. Sci., Vol. 12, No. 18, 9218, 2022.
doi:10.3390/app12189218        Google Scholar

33. Hirtenfelder, F., "Effective antenna Simulations using CST MICROWAVE STUDIO (R),", 239, 2007.        Google Scholar

34. Musa, U., S. M. Shah, H. A. Majid, Z. Z. Abidin, M. S. Yahya, S. Babani, and Z. Yunusa, "Recent advancement of wearable reconfigurable antenna technologies: A Review," IEEE Access, Vol. 10, 121831-121863, 2022.
doi:10.1109/ACCESS.2022.3222782        Google Scholar

35. Skyworks "SMP1321 Series: Low Capacitance, Plastic Packaged PIN Diodes,", Skyworks Solut., 2019.        Google Scholar

36. Roy, A., S. Bhunia, D. Sarkar, P. Sarkar, and S. Chowdhury, "Compact multi frequency strip loaded microstrip patch antenna with spur-lines," Int. J. Microw. Wirel. Technol., Vol. 9, 1-11, 2016.        Google Scholar

37. Aneesh, M., J. A. Ansari, and A. Singh, "Analysis of S-shape microstrip patch antenna for bluetooth application," Int. J. Sci. Res. Publ., Vol. 3, No. 11, 2013.        Google Scholar

38. Pandey, V. K. and B. Vishvakarma, "Theoretical analysis of linear array antenna of stacked patches," Indian J. Radio Sp. Phys., Vol. 34, 125-130, 2005.        Google Scholar

39. Meshram, M., B. Vishvakarma, and M. Meshramy, "Gap-coupled microstrip array antenna for wide-band operation Gap-coupled microstrip array antenna for wide-band operation," Int. J. Electron., Vol. 88, 2001.
doi:10.1080/00207210110071288        Google Scholar

40. Musa, U., S. Babani, Z. Yunusa, and A. S. Ali, "Bandwidth enhancement of microstrip patch antenna using slits for 5G mobile communication networks," 2020 International Symposium on Antennas and Propagation (ISAP), 559-560, Jan. 2021.
doi:10.23919/ISAP47053.2021.9391151        Google Scholar

41. Radiation, ICNIRP (International Commission on Non-Ionizing Protection) "Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 5, 494-522, 1998.        Google Scholar

42. "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," IEEE Std C95.1, 1999 Ed., 1-83, Apr. 1999.        Google Scholar

43. Tahir, F. A. and A. Javed, "A compact dual-band frequency-reconfigurable textile antenna for wearable applications," Microw. Opt. Technol. Lett., Vol. 57, No. 10, 2251-2257, 2015.
doi:10.1002/mop.29311        Google Scholar

44. Muduli, A., M. Kanneboina, K. Mudumunthala, and S. Valluri, "A reconfigurable wearable antenna for mid band 5G applications," J. Phys. Conf. Ser., Vol. 1921, 12051, 2021.
doi:10.1088/1742-6596/1921/1/012051        Google Scholar

45. Fang, S., L. Zhou, and X. Jia, "Dual-band and dual-polarized circular patch textile antenna for on-/off-body WBAN applications," IET Microwaves, Antennas Propag., Vol. 14, 2020.        Google Scholar

46. Tong, X., C. Liu, X. Liu, H. Guo, and X. Yang, "Dual-band on-/off-body reconfigurable antenna for Wireless Body Area Network (WBAN) applications," Microw. Opt. Technol. Lett., Vol. 60, No. 4, 945-951, 2018.
doi:10.1002/mop.31088        Google Scholar