Vol. 120
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-25
High-Eccentricity Orbit Synthetic Aperture Radar with Multi-Parameters Joint Agile Variation
By
Progress In Electromagnetics Research M, Vol. 120, 83-94, 2023
Abstract
The variable orbit altitude and platform velocity in high-eccentricity orbit synthetic aperture radar (HEO SAR) increase the difficulty in obtaining effective radar echoes. In this letter, a new stripmap imaging mode with multi-parameter joint agile variation in HEO-SAR is proposed. First, the range side-looking angle is adjusted during the whole raw data acquisition interval according to the time-varying side-looking geometric relationship, while the pulse repetition frequency (PRF) is continuously changed to obtain uniform azimuth sampling due to the satellite velocity variation. Besides simultaneously adjusting the side-looking angle and the operated PRF, echo sampling start time and range sampling points are also continuously changed to decrease the echo data rate. According to the echo characteristics in HEO SAR, its corresponding imaging algorithm is presented, which includes range samples adjustment, azimuth resampling, cubic filtering, nonuniform Fourier fast transform (NUFFT) for nonlinear range cell migration correction (RCMC) and modified azimuth compression. A system design example with multi-parameters joint agile variation for the desired resolution of 3 m and the swath width of 30 km is given, while an imaging simulation experiments on point targets are carried out. Both simulation results of multi-parameters variation design and point targets imaging validate the proposed stripmap imaging mode with multi-parameters joint agile variation in HEO SAR.
Citation
Xuhang Lu, Wei Xu, Pingping Huang, Weixian Tan, and Yaolong Qi, "High-Eccentricity Orbit Synthetic Aperture Radar with Multi-Parameters Joint Agile Variation," Progress In Electromagnetics Research M, Vol. 120, 83-94, 2023.
doi:10.2528/PIERM23080805
References

1. Zhang, Z., W. Xu, P. Huang, W. Tan, Z. Gao, and Y. Qi, "Azimuth full-aperture processing of spaceborne squint SAR data with block varying PRF," Sensors, Vol. 22, 9328, 2022.
doi:10.3390/s22239328

2. Braun, H. M., H. Baessler, and C. Jonas, "Daily monitoring of the mediterranean sea by Geosynchronous SAR," 2016 IEEE Radar Conference, 1-4, Philadelphia, PA, USA, 2016.

3. Zheng, L., S. Liu, and Y. Wang, "System design of GEO-LEO bistaic SAR with high resolution and wide swath," 2018 IEEE International Conference on Mechatronics, Robotics and Automation, 1-5, Hefei, China, 2018.

4. Wang, Y., R. Min, Z. Ding, T. Zeng, and L. Li, "Multi-layer overlapped subaperture algorithm for extremely-high-squint high-resolution wide-swath SAR imaging with continuously time-varying radar parameters," Remote Sensing, Vol. 14, No. 2, 365, 2022.
doi:10.3390/rs14020365

5. Hu, X., P. Wang, H. Zeng, and Y. Guo, "An improved equivalent squint range model and imaging approach for sliding spotlight SAR based on highly elliptical orbit," Remote Sensing, Vol. 13, No. 24, 4883, 2021.
doi:10.3390/rs13234883

6. Kim, A. D. and C. Tsogka, "Tunable high-resolution synthetic aperture radar imaging," Radio Science, Vol. 57, No. 11, e2022RS007572, 2022.
doi:10.1029/2022RS007572

7. Sung, J.-B. and S.-Y. Hong, "In-orbit operational parameter calculation and performance optimization in KOMPSAT-6 synthetic aperture radar," Remote Sensing, Vol. 13, 2342, 2021.
doi:10.3390/rs13122342

8. Dai, C., F. Tian, and Z. Suo, "Fast geolocation solution for bistatic interferometric synthetic aperture radar configuration of inclined geosynchronous transmitter with low earth orbit receivers," IET Radar, Sonar & Navigation, Vol. 17, No. 5, 888-898, 2023.
doi:10.1049/rsn2.12385

9. Zhu, X. X. and R. Bamler, "Very high resolution spaceborne SAR tomography in urban environment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4290-4308, 2010.
doi:10.1109/TGRS.2010.2050487

10. Rossi, C., F. R. Gonzalez, T. Fritz, et al. "TANDEM-X calibrated raw DEM generation," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 73, 12-20, 2012.
doi:10.1016/j.isprsjprs.2012.05.014

11. Ka, M.-H., P. E. G. Shimkin, A. I. Baskakov, and M. I. Babokin, "A new single-pass SAR interferometry technique with a single-antenna for terrain height measurements," Remote Sens., Vol. 11, No. 9, 1070, 2019.
doi:10.3390/rs11091070

12. Zhu, X. and R. Bamler, "Tomographic SAR inversion by L1 norm regularization --- The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2012.
doi:10.1109/TGRS.2010.2048117

13. Bordoni, F., M. Rodriguez-Cassola, and G. Krieger, "Possible sources of imaging performance degradation in advanced spaceborne SAR systems based on scan-on-receive," 2020 IEEE Radar Conference, 1-4, Florence, Italy, 2020.

14. Zhang, Y., W. Xiong, X. Dong, et al. "A location method for ground moving target with azimuth spectrum aliasing in Geosynchronous Spaceborne-Airborne Bistatic multichannel SAR," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1-4, Chongqing, China, 2019.

15. Zhao, S., Y. Deng, and R. Wang, "Imaging for high-resolution wide-swath spaceborne SAR using cubic filtering and NUFFT based on circular orbit approximation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 2, 787-800, Feb. 2017.
doi:10.1109/TGRS.2016.2615000

16. Meng, D., L. Huang, X. Qiu, et al. "A novel approach to processing very-high-resolution spaceborne SAR data with severe spatial dependence," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 7472-7482, 2022.
doi:10.1109/JSTARS.2022.3202932