1. Zhang, Z., W. Xu, P. Huang, W. Tan, Z. Gao, and Y. Qi, "Azimuth full-aperture processing of spaceborne squint SAR data with block varying PRF," Sensors, Vol. 22, 9328, 2022.
doi:10.3390/s22239328
2. Braun, H. M., H. Baessler, and C. Jonas, "Daily monitoring of the mediterranean sea by Geosynchronous SAR," 2016 IEEE Radar Conference, 1-4, Philadelphia, PA, USA, 2016.
3. Zheng, L., S. Liu, and Y. Wang, "System design of GEO-LEO bistaic SAR with high resolution and wide swath," 2018 IEEE International Conference on Mechatronics, Robotics and Automation, 1-5, Hefei, China, 2018.
4. Wang, Y., R. Min, Z. Ding, T. Zeng, and L. Li, "Multi-layer overlapped subaperture algorithm for extremely-high-squint high-resolution wide-swath SAR imaging with continuously time-varying radar parameters," Remote Sensing, Vol. 14, No. 2, 365, 2022.
doi:10.3390/rs14020365
5. Hu, X., P. Wang, H. Zeng, and Y. Guo, "An improved equivalent squint range model and imaging approach for sliding spotlight SAR based on highly elliptical orbit," Remote Sensing, Vol. 13, No. 24, 4883, 2021.
doi:10.3390/rs13234883
6. Kim, A. D. and C. Tsogka, "Tunable high-resolution synthetic aperture radar imaging," Radio Science, Vol. 57, No. 11, e2022RS007572, 2022.
doi:10.1029/2022RS007572
7. Sung, J.-B. and S.-Y. Hong, "In-orbit operational parameter calculation and performance optimization in KOMPSAT-6 synthetic aperture radar," Remote Sensing, Vol. 13, 2342, 2021.
doi:10.3390/rs13122342
8. Dai, C., F. Tian, and Z. Suo, "Fast geolocation solution for bistatic interferometric synthetic aperture radar configuration of inclined geosynchronous transmitter with low earth orbit receivers," IET Radar, Sonar & Navigation, Vol. 17, No. 5, 888-898, 2023.
doi:10.1049/rsn2.12385
9. Zhu, X. X. and R. Bamler, "Very high resolution spaceborne SAR tomography in urban environment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4290-4308, 2010.
doi:10.1109/TGRS.2010.2050487
10. Rossi, C., F. R. Gonzalez, T. Fritz, et al. "TANDEM-X calibrated raw DEM generation," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 73, 12-20, 2012.
doi:10.1016/j.isprsjprs.2012.05.014
11. Ka, M.-H., P. E. G. Shimkin, A. I. Baskakov, and M. I. Babokin, "A new single-pass SAR interferometry technique with a single-antenna for terrain height measurements," Remote Sens., Vol. 11, No. 9, 1070, 2019.
doi:10.3390/rs11091070
12. Zhu, X. and R. Bamler, "Tomographic SAR inversion by L1 norm regularization --- The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2012.
doi:10.1109/TGRS.2010.2048117
13. Bordoni, F., M. Rodriguez-Cassola, and G. Krieger, "Possible sources of imaging performance degradation in advanced spaceborne SAR systems based on scan-on-receive," 2020 IEEE Radar Conference, 1-4, Florence, Italy, 2020.
14. Zhang, Y., W. Xiong, X. Dong, et al. "A location method for ground moving target with azimuth spectrum aliasing in Geosynchronous Spaceborne-Airborne Bistatic multichannel SAR," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1-4, Chongqing, China, 2019.
15. Zhao, S., Y. Deng, and R. Wang, "Imaging for high-resolution wide-swath spaceborne SAR using cubic filtering and NUFFT based on circular orbit approximation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 2, 787-800, Feb. 2017.
doi:10.1109/TGRS.2016.2615000
16. Meng, D., L. Huang, X. Qiu, et al. "A novel approach to processing very-high-resolution spaceborne SAR data with severe spatial dependence," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 7472-7482, 2022.
doi:10.1109/JSTARS.2022.3202932