1. Zhang, Z., W. Xu, P. Huang, W. Tan, Z. Gao, and Y. Qi, "Azimuth full-aperture processing of spaceborne squint SAR data with block varying PRF," Sensors, Vol. 22, 9328, 2022.
doi:10.3390/s22239328 Google Scholar
2. Braun, H. M., H. Baessler, and C. Jonas, "Daily monitoring of the mediterranean sea by Geosynchronous SAR," 2016 IEEE Radar Conference, 1-4, Philadelphia, PA, USA, 2016. Google Scholar
3. Zheng, L., S. Liu, and Y. Wang, "System design of GEO-LEO bistaic SAR with high resolution and wide swath," 2018 IEEE International Conference on Mechatronics, Robotics and Automation, 1-5, Hefei, China, 2018. Google Scholar
4. Wang, Y., R. Min, Z. Ding, T. Zeng, and L. Li, "Multi-layer overlapped subaperture algorithm for extremely-high-squint high-resolution wide-swath SAR imaging with continuously time-varying radar parameters," Remote Sensing, Vol. 14, No. 2, 365, 2022.
doi:10.3390/rs14020365 Google Scholar
5. Hu, X., P. Wang, H. Zeng, and Y. Guo, "An improved equivalent squint range model and imaging approach for sliding spotlight SAR based on highly elliptical orbit," Remote Sensing, Vol. 13, No. 24, 4883, 2021.
doi:10.3390/rs13234883 Google Scholar
6. Kim, A. D. and C. Tsogka, "Tunable high-resolution synthetic aperture radar imaging," Radio Science, Vol. 57, No. 11, e2022RS007572, 2022.
doi:10.1029/2022RS007572 Google Scholar
7. Sung, J.-B. and S.-Y. Hong, "In-orbit operational parameter calculation and performance optimization in KOMPSAT-6 synthetic aperture radar," Remote Sensing, Vol. 13, 2342, 2021.
doi:10.3390/rs13122342 Google Scholar
8. Dai, C., F. Tian, and Z. Suo, "Fast geolocation solution for bistatic interferometric synthetic aperture radar configuration of inclined geosynchronous transmitter with low earth orbit receivers," IET Radar, Sonar & Navigation, Vol. 17, No. 5, 888-898, 2023.
doi:10.1049/rsn2.12385 Google Scholar
9. Zhu, X. X. and R. Bamler, "Very high resolution spaceborne SAR tomography in urban environment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4290-4308, 2010.
doi:10.1109/TGRS.2010.2050487 Google Scholar
10. Rossi, C., F. R. Gonzalez, T. Fritz, et al. "TANDEM-X calibrated raw DEM generation," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 73, 12-20, 2012.
doi:10.1016/j.isprsjprs.2012.05.014 Google Scholar
11. Ka, M.-H., P. E. G. Shimkin, A. I. Baskakov, and M. I. Babokin, "A new single-pass SAR interferometry technique with a single-antenna for terrain height measurements," Remote Sens., Vol. 11, No. 9, 1070, 2019.
doi:10.3390/rs11091070 Google Scholar
12. Zhu, X. and R. Bamler, "Tomographic SAR inversion by L1 norm regularization --- The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2012.
doi:10.1109/TGRS.2010.2048117 Google Scholar
13. Bordoni, F., M. Rodriguez-Cassola, and G. Krieger, "Possible sources of imaging performance degradation in advanced spaceborne SAR systems based on scan-on-receive," 2020 IEEE Radar Conference, 1-4, Florence, Italy, 2020. Google Scholar
14. Zhang, Y., W. Xiong, X. Dong, et al. "A location method for ground moving target with azimuth spectrum aliasing in Geosynchronous Spaceborne-Airborne Bistatic multichannel SAR," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1-4, Chongqing, China, 2019. Google Scholar
15. Zhao, S., Y. Deng, and R. Wang, "Imaging for high-resolution wide-swath spaceborne SAR using cubic filtering and NUFFT based on circular orbit approximation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 2, 787-800, Feb. 2017.
doi:10.1109/TGRS.2016.2615000 Google Scholar
16. Meng, D., L. Huang, X. Qiu, et al. "A novel approach to processing very-high-resolution spaceborne SAR data with severe spatial dependence," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 7472-7482, 2022.
doi:10.1109/JSTARS.2022.3202932 Google Scholar