Vol. 113
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-27
Compact Broadband Dual-Polarized Antenna with Parasitic Patches
By
Progress In Electromagnetics Research Letters, Vol. 113, 25-34, 2023
Abstract
In this paper, a broadband compact dual-polarized antenna for base stations is proposed. This antenna consists of a pair of crossed dipoles, four triangular parasitic patches, four metal posts and a box reflector. The crossed dipoles are fed by two 50 Ω coaxial cables. The increase of four parasitic patches allows the resonant point to be generated at high frequencies to further widen the impedance bandwidth; the size of the parasitic patches is reduced to realize the reduction of the antenna radiator size; and the impedance matching is improved by cutting circular slots in the dipole arms. The measured results show that the proposed antenna is able to achieve a wide impedance bandwidth of 79% (1.67 to 3.87 GHz) with VSWR less than 1.6. A stable gain of 8-8.7 dBi and a half-power beamwidth (HPBW) of 60-78° are obtained at 2.2-3.65 GHz. In addition, the antenna radiator is very compact in size, only about 0.41λL × 0.41λL × 0.17λL, where λL is the longest operating wavelength.
Citation
Sensen Han, Feng Shang, and Xinwei Wang, "Compact Broadband Dual-Polarized Antenna with Parasitic Patches," Progress In Electromagnetics Research Letters, Vol. 113, 25-34, 2023.
doi:10.2528/PIERL23071702
References

1. Li, J., S.-J. Hao, Y.-G. Cui, and X. Chen, "A miniaturized wideband dual-polarized planar antenna based on multiresonance," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 2, 242-246, Feb. 2022.
doi:10.1109/LAWP.2021.3124281

2. Wen, D.-L., D.-Z. Zheng, and Q.-X. Chu, "A dual-polarized planar antenna using four folded dipoles and its array for base stations," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5536-5542, Dec. 2016.
doi:10.1109/TAP.2016.2623660

3. Cui, Y., X. Gao, and R. Li, "A broadband differentially fed dual-polarized planar antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3231-3234, Jun. 2017.
doi:10.1109/TAP.2017.2694884

4. Sun, H. H., C. Ding, H. Zhu, and Y. J. Guo, "Dual-polarized multi-resonance antennas with broad bandwidths and compact sizes for base station applications," IEEE Open J. Antennas Propag., Vol. 1, 11-19, 2019.

5. Fu, S., Z. Cao, X. Quan, and C. Xu, "A broadband dual-polarized notched-band antenna for 2/3/4/5G base station," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 69-73, Jan. 2020.
doi:10.1109/LAWP.2019.2953294

6. Jiang, X., Z. Zhang, Y. Li, and Z. Feng, "A wideband dual-polarized slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1010-1013, 2013.
doi:10.1109/LAWP.2013.2276016

7. Lian, R., Z. Wang, Y. Yin, J. Wu, and X. Song, "Design of a low-profile dual-polarized stepped slot antenna array for base station," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 362-365, 2016.
doi:10.1109/LAWP.2015.2446193

8. Zhou, Z., Z. Wei, Z. Tang, and Y. Yin, "Design and analysis of a wideband multiple-microstrip dipole antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 722-726, Apr. 2019.
doi:10.1109/LAWP.2019.2901838

9. Wen, L.-H., et al., "A wideband dual-polarized antenna using shorted dipoles," IEEE Access, Vol. 6, 39725-39733, 2018.
doi:10.1109/ACCESS.2018.2855425

10. Feng, Y., F.-S. Zhang, G.-J. Xie, Y. Guan, and J. Tian, "A broadband and wide-beamwidth dual-polarized orthogonal dipole antenna for 4G/5G communication," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 7, 1165-1169, Jul. 2021.
doi:10.1109/LAWP.2021.3074558

11. Wang, D., G. Wang, D. Lu, N. Yang, and Q. Zhang, "Design of wideband base station antenna by involving Fragment-type structures on dipole arms," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5953-5958, Jul. 2022.
doi:10.1109/TAP.2022.3161285

12. Ye, L. H., Y. J. Li, and D.-L. Wu, "Dual-wideband dual-polarized dipole antenna with T-shaped slots and stable radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 610-614, Mar. 2022.
doi:10.1109/LAWP.2021.3139454