Vol. 113
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-19
High-Gain Pencil-Beam Microstrip Antenna Array for Radar Application
By
Progress In Electromagnetics Research Letters, Vol. 113, 17-24, 2023
Abstract
For long-range communication, the directivity and gain of a millimeter wave antenna should be high. The aim of the paper is to design an antenna array that works at higher frequencies X/Ku-band (8-12 GHz)/(12-18 GHz) respectively for applications such as RADAR. This can be achieved by an array of antennas as single antenna cannot provide such high gain and directivity. The radiation pattern has directional pencil beam in which the frequency and gain plot is shown at 11.32 GHz. The maximum gain of 29.0994 dB has been achieved at 11.32 GHz frequency. The software High Frequency Structure Simulator (HFSS) has been used for simulation, and the simulated and measured results are found in agreement with each other
Citation
Meenal Job, Ram Suchit Yadav, Gulman Siddiqui, Vishant Gahlaut, and Upendra Narayan Mishra, "High-Gain Pencil-Beam Microstrip Antenna Array for Radar Application," Progress In Electromagnetics Research Letters, Vol. 113, 17-24, 2023.
doi:10.2528/PIERL23072805
References

1. Graf, R. F., "Antenna," Modern Dictionary of Electronics, 29, Newnes, 1999.

2. Mcdonand, K. T., The U-shaped Antenna of Shtrikman, Vol. 1, 1-9, 2003.

3. Alsager, A. F., "Design and analysis of microstrip patch antenna arrays,", No. 1, 1-80, Msc. Thesis, School of Engineering, University College of Boras, 2011.

4. Barrou, O., A. El Amri, and A. Reha, "Microstrip patch antenna array and its applications: A survey," IOSR Journal of Electrical and Electronics Engineering, Vol. 15, No. 1, 26-38, 2020.

5. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

6. Kemtchang, R. D., D. B. O. Konditi, and E. Mwangi, "Design of a 2 GHz microstrip antenna for wireless application using cross-shaped patch aperture," International Journal of Engineering Research and Technology, Vol. 11, No. 5, 805-818, 2018.

7. Howell, J., "Microstrip antennas," 1972 Antennas and Propagation Society International Symposium, 177-180, Williamsburg, VA, USA, 1972.

8. Kaur, P., "Gain enhancement of microstrip patch antenna with slotting techniques," International Journal of Advanced Research in Engineering & Management, Vol. 03, No. 1, 13-19, Feb. 2017.

9. Bisht, S., S. Saini, V. Prakash, and B. Nautiyal, "Study the various feeding techniques of microstrip antenna using design and simulation using CST microwave studio," International Journal of Emerging Technology and Advanced Engineering, Vol. 4, No. 9, Sep. 2014.

10. Paul, L. C. and N. Sultan, "Design, simulation and performance analysis of a line feed rectangular micro-strip patch antenna," International Journal of Engineering Sciences & Emerging Technologies, Vol. 4, No. 2, 117-126, 2013.

11. Kaur, N., N. Sharma, and N. Singh, "A study of different feeding mechanisms in microstrip patch antenna," International Journal of Microwaves Applications, Vol. 6, No. 1, Jan.-Feb. 2017.

12. Majumder, A., "Rectangular microstrip patch antenna using coaxial probe feeding technique to operate in S-band," International Journal of Engineering Trends and Technology, Vol. 4, No. 4, Apr. 2013.

13. Singh, M., A. Basu, and S. K. Koul, "Design of aperture coupled fed micro-strip patch antenna for wireless communication," India Conference, 2006.

14. Bhanarkar, M. K., G. B. Waghmare, F. Antennas, A. J. Nadaf, and P. M. Korake, "Comparative analysis of FR4 and RT-duroid materials antenna for wireless application," International Journal Series in Engineering Science, Vol. 2, No. 2, 1-10, 2016.

15. Singh, I. and V. S. Tripathi, "Microstrip patch antenna and its applications: A survey," International Journal of Computer Applications in Technology, Vol. 2, No. 5, 1595-1599, Sep. 2011.

16. Rabbani, M. S. and H. Ghafouri-Shiraz, "Liquid crystalline polymer substrate-based THz microstrip antenna arrays for medical applications," IEEE Antennas Wireless Propagation Letters, Vol. 16, 1533-1536, 2017.
doi:10.1109/LAWP.2017.2647825

17. Rabbani, M. S. and H. Ghafouri-Shiraz, "Improvement of microstrip patch antenna gain and bandwidth at 60 GHz and X bands for wireless applications," IET Microwaves Antennas Propagation, Vol. 10, No. 11, 1167-1173, 2017.
doi:10.1049/iet-map.2015.0672

18. Najeeb, R., D. Hassan, D. Najeeb, and H. Ademgil, "Design and simulation of microstrip patch antenna array for X-band applications," 13th HONET-ICT International Symposium on Smart MicroGrids for Sustainable Energy Sources Enabled by Photonics and IoT Sensors, 79-83, 2018.

19. Ramamurthy, V., D. V. Katrodiya, J. N. Peshavaria, and V. Ramamoorthy, "Design of microstrip patch antenna array for wireless applications," Iject, Vol. 6, No. 2, 1-5, 2015.

20. Naveen, K., K. Dasari, G. Swapnasri, R. Swetha, S. Nishitha, and B. Anusha, "Microstrip patch antenna array with gain enhancement for WLAN applications," ASSIC 2022 --- Proceedings: International Conference on Advancements in Smart, Secure and Intelligent Computing, 17-25, 2022.

21. Shingate, S., N. Shukla, and N. R. Ingale, "Bandwidth and gain enhancement of microstrip array antenna using stacked layer of parasitic patches," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 32-36, Bangalore, India, 2018.

22. Ekke, V. R. and P. L. Zade, "Gain enhancement of microstrip patch antenna array by using substrate integrated waveguide for wireless communication system," 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), 1017-1019, Pune, India, 2016.
doi:10.1109/ICACDOT.2016.7877740