An Integrated Shark-Fin Reconfigurable Antenna for V2X Communications
Dimitris Rongas ,
Anastasios Paraskevopoulos ,
Leonidas Marantis and
Athanasios G. Kanatas
This paper focuses on the design, development, and integration of a V2X shark-fin antenna. A novel planar Electronically Switched Parasitic Array Radiator (ESPAR) antenna, operating at 5.9 GHz, is proposed. The antenna exhibits pattern reconfigurability i.e. one quasi-omni and two directive beams, low cost, reduced complexity and small dimensions. Therefore, it is considered as an ideal candidate for integrating inside a shark-fin casing. The ESPAR antenna prototype is fabricated and tested in three different measurement scenarios: (a) free-space, (b) inside shark-fin, and (c) shark-fin with ground plane. A good correlation between simulated and experimental results has been obtained. The proposed antenna involves a reconfigurable impedance matching network that is integrated in the antenna design, and thus, it demonstrates a satisfactory impedance matching for all antenna states. A considerable gain enhancement (3-4 dB) is also recorded between the omnidirectional and two directive patterns.