1. Murtaza, N., R.-K. Sharma, R. S. Thoma, and M. A. Hein, "Directional antennas for cognitive radio: Analysis and design recommendations," Progress In Electromagnetics Research, Vol. 140, 1-30, 2013.
doi:10.2528/PIER13031107 Google Scholar
2. Song, H., X. Fang, L. Yan, and Y. Fang, "Control/user plane decoupled architecture utilizing unlicensed bands in LTE systems," IEEE Trans. on Communications, Vol. 66, No. 1, 407-417, Jan. 2018. Google Scholar
3. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
doi:10.1109/TCOMM.2011.102011.100708 Google Scholar
4. Erdogmus, D., R. Agrawal, and J. C. Principe, "A mutual information extension to the matched filter," Signal Proc., Vol. 85, No. 5, 927-935, May 2005.
doi:10.1016/j.sigpro.2004.11.018 Google Scholar
5. Orimoto, H. and A. Ikuta, "Signal processing for noise cancellation in actual electromagnetic environment," Progress In Electromagnetics Research, Vol. 99, 307-322, 2009.
doi:10.2528/PIER09100907 Google Scholar
6. Liu, T., T. Qiu, and S. Luan, "Cyclic frequency estimation by compressed cyclic correntropy spectrum in impulsive noise," IEEE Signal Processing Letters, Vol. 26, No. 6, 888-892, 2019.
doi:10.1109/LSP.2019.2910928 Google Scholar
7. Ma, J. and Y. Li, "Soft combination and detection for cooperative spectrum sensing in cognitive radio networks," Global Telecommun. Conf., GLOBECOM'07, 3139-3143, IEEE, Nov. 2007. Google Scholar
8. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
doi:10.1109/TSP.2015.2457400 Google Scholar
9. Pokharel, P. P., R. Agrawal, and J. C. Principe, "Correntropy based matched filtering," Proc. IEEE Workshop Mach. Learning for Signal Proc., 341-346, Sep. 2005. Google Scholar
10. Lee, J. and J. C. Principe, "Correntropy-based spectrum sensing for wireless microphones in man-made noise environments," Proc. Int. Workshop on CIP, 1-6, May 2012. Google Scholar
11. Silverman, B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, 1986.
doi:10.1007/978-1-4899-3324-9
12. Akyildiz, I., W. Lee, M. Vuran, and S. Mohanty, "Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Netw., Vol. 50, No. 13, 2127-2159, Sep. 2006.
doi:10.1016/j.comnet.2006.05.001 Google Scholar
13. Maleki, S., S. P. Chepuri, and G. Leus, "Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks," Phys. Commun., Vol. 9, 193-198, Dec. 2013.
doi:10.1016/j.phycom.2012.07.003 Google Scholar
14. Ghorbel, M. B., H. Nam, and M. S. Alouini, "Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels," IEEE Communications Letters, Vol. 19, No. 2, 227-230, 2015.
doi:10.1109/LCOMM.2014.2377231 Google Scholar
15. Li, S., T. Qiu, and D. Zha, "Adaptive blind equalization for MIMO systems under α-stable noise environment," IEEE Communications Letters, Vol. 13, No. 8, 609-611, Aug. 2009.
doi:10.1109/LCOMM.2009.081982 Google Scholar
16. Patel, A. and A. K. Jagannatham, "Non-antipodal signaling based robust detection for cooperative spectrum sensing in MIMO cognitive radio networks," IEEE Signal Processing Letters, Vol. 20, No. 7, 661-664, 2013.
doi:10.1109/LSP.2013.2261985 Google Scholar
17. Schouten, T. E. and L. Van, "Fast exact euclidean distance (FEED): A new class of adaptable distance transforms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 11, 2159-2172, 2014.
doi:10.1109/TPAMI.2014.25 Google Scholar
18. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
doi:10.1109/TSP.2015.2457400 Google Scholar
19. Ji, Z. and H. Zhang, "Kernel recursive generalized maximum correntropy," IEEE Signal Processing Letters, Vol. 24, No. 12, 1832-1836, 2017.
doi:10.1109/LSP.2017.2761886 Google Scholar
20. Hinton, G. E. and S. J. Nowlan, "The bootstrap Widrow-Hoff rule as a cluster-formation algorithm," Neural Comput., Vol. 2, No. 3, 355-362, 1990.
doi:10.1162/neco.1990.2.3.355 Google Scholar
21. Serfling, R. J., Approximation Theorems of Mathematical Statistics, Wiley, 1980.
doi:10.1002/9780470316481
22. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
doi:10.1109/TCOMM.2011.102011.100708 Google Scholar
23. Cordeiro, C., K. Challapali, and D. Birru, "IEEE 802.22: An introduction to the first wireless standard based on cognitive radios," J. Commun., Vol. 1, No. 1, 38-47, Apr. 2006.
doi:10.4304/jcm.1.1.38-47 Google Scholar
24. Liu, M., N. Zhao, J. Li, and V. Leung, "Spectrum sensing based on maximum generalized correntropy under symmetric alpha stable noise," IEEE Transactions on Vehicular Technology, Vol. 68, No. 10, 10262-10266, 2019, doi: 10.1109/TVT.2019.2931949.
doi:10.1109/TVT.2019.2931949 Google Scholar