1. Griffiths, L. A., R. Parakh, C. Furse, and B. Baker, "The invisible fray: A critical analysis of the use of reflectometry for fray location," IEEE Sensors Journal, Vol. 6, No. 3, 697-706, 2006.
doi:10.1109/JSEN.2006.874017 Google Scholar
2. Schuet, S., D. Timucin, and K. Wheeler, "A model-based probabilistic inversion framework for characterizing wire fault detection using TDR," IEEE Trans. Instrum. Meas., Vol. 60, No. 5, 1654-1663, May 2011.
doi:10.1109/TIM.2011.2105030 Google Scholar
3. Shin, Y. J., et al., "Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable," IEEE Trans. Instrum. Meas., Vol. 54, No. 6, 2493-2500, Dec. 2005.
doi:10.1109/TIM.2005.858115 Google Scholar
4. Shi, Q. and O. Kanoun, "Wire fault diagnosis in the frequency domain by impedance spectroscopy," IEEE Trans. Instrum. Meas., Vol. 64, No. 8, 2179-2187, Aug. 2015.
doi:10.1109/TIM.2014.2386918 Google Scholar
5. Lelong, A., M. Olivas Carrion, V. Degardin, and M. Lienard, "On line wiring diagnosis by modified spread spectrum time domain reflectometry," PIERS Proceeding, 182-186, Hangzhou, China, Mar. 24–28, 2008. Google Scholar
6. Auzanneau, F., "Wire troubleshooting and diagnosis: Review and perspectives," Progress In Electromagnetics Research B, Vol. 49, 253-279, 2013.
doi:10.2528/PIERB13020115 Google Scholar
7. Osman, O., S. Sallem, L. Sommervogel, M. Olivas Carrion, A. Peltier, P. Bonnet, and F. Paladian, "Method to improve fault location accuracy against cables dispersion effect," Progress In Electromagnetics Research Letters, Vol. 83, 29-35, 2019.
doi:10.2528/PIERL19021907 Google Scholar
8. Ben Hassen, W., F. Auzanneau, L. Incarbone, F. Peres, A. Francois, "Distributed sensor fusion for wire fault location using sensor clustering strategy," International Journal of Distributed Sensors Networks, 1-17, 2015, ISSN 1550-1329. Google Scholar
9. Lelong, A., L. Sommervogel, N. Ravot, and M. Olivas Carrion, "Distributed reflectometry method for wire fault location using selective average," IEEE Sensors Journal, Vol. 10, No. 2, 300-310, Feb. 2010.
doi:10.1109/JSEN.2009.2033946 Google Scholar
10. El Sahmarany, L., L. Berry, N. Ravot, F. Auzanneau, and P. Bonnet, "Time reversal for soft faults diagnosis in wire networks," Progress In Electromagnetics Research M, Vol. 31, 45-58, 2013.
doi:10.2528/PIERM13032801 Google Scholar
11. Kafal, M., R. Razzaghi, A. Cozza, F. Auzanneau, and W. Ben-Hassen, "A review on the application of the time reversal theory to wire network and power system diagnosis," IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, May 2019. Google Scholar
12. Abboud, L., A. Cozza, and L. Pichon, "A non-iterative method for locating soft faults in complex wire networks," IEEE Transactions on Vehicular Technology, Vol. 62, No. 3, 1010-1019, 2013.
doi:10.1109/TVT.2013.2237796 Google Scholar
13. Kafal, M., A. Cozza, and L. Pichon, "Locating multiple soft faults in wire networks using alternative DORT implementation," IEEE Transactions on Instrumentation and Measurements, Vol. 65, No. 2, 399-406, 2015.
doi:10.1109/TIM.2015.2498559 Google Scholar
14. Lelong, A. and M. Carrion, "On line wire diagnosis using multi-carrier time domain reflectometry for fault location," 2009 IEEE Sensors, 751-754, Oct. 2009. Google Scholar
15. Sallem, S. and O. Osman, "Wired network distributed diagnosis and sensors communications by Multi-carrier Time Domain reflectometry," IEEE Intelligent Systems Conference, London, UK, Sep. 2018. Google Scholar
16. Amloune, A., H. Bouchekara, M. K. Smail, F. de Paulis, et al. "An intelligent wire fault diagnosis approach using time domain reflectometry and pattern recognition network," Nondestructive Testing and Evaluation, 2018, DOI: 10.1080/10589759.2018.1559312. Google Scholar
17. Laib, A., M. Melit, B. Nekoul, K. E. K. Drissi, and K. Kerroum, "Soft fault identification in electrical network using time domain reflectometry and neural network," LNEE Lecture Notes in Electrical Engineering, 365-376, Springer, Jan. 2019.
doi:10.1007/978-3-319-97816-1_28 Google Scholar
18. Smail, M. K., T. Hacib, L. Pichon, and F. Loete, "Detection and location of defects in wiring networks using time domain reflectometry and neural network," IEEE Trans. on Magn., Vol. 47, No. 5, 1502-1505, May 2011.
doi:10.1109/TMAG.2010.2089503 Google Scholar
19. Osman, O., S. Sallem, L. Sommervogel, M. Olivas, et al. "Distributed sensor diagnosis in complex wired networks for soft fault detection using reflectometry and neural network," IEEE Autotestcon, USA, Aug. 2019. Google Scholar
20. Tang, H. and Q. Zhang, "An inverse scattering approach to soft fault diagnosis in lossy electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3730-3737, Nov. 2011.
doi:10.1109/TAP.2011.2163772 Google Scholar
21. Hayt, W., Engineering Electromagnetics, 6th Ed., 437-440, McGraw-Hill, 1989.
22. Zhang, J., Q. B. Chen, Z. Qiu, J. L. Drewniak, and A. Orlandi, "Extraction of causal RLGC models from measurements for signal link path analysis," 2008 International Symposium on Electromagnetic Compatibility — EMC Europe, 1-6, Hamburg, 2008. Google Scholar
23. Ravot, N. and F. Auzanneau, "Defects detection and localization in complex topology wired networks," Ann. Telecommun., Vol. 62, No. 1–2, 193-213, Jan. 2007. Google Scholar
24. Coccorse, E., R. Martone, and F. C. Morabit, "A neural network approach for the solution of electric and magnetic inverse problems," IEEE Trans. Magn., Vol. 30, No. 5, 2829-2839, Sep. 1994.
doi:10.1109/20.312527 Google Scholar
25. Travassos, L., D. A. G. Vieira, N. Ida, C. Vollaire, and A. Nicolas, "Characterization of inclusions in a nonhomogenous GPR problem by artificial neural networks," IEEE Trans. Magn., Vol. 44, No. 6, 163-1633, Jun. 2008. Google Scholar
26. Zhou, Y., J. Hahn, and M. S. Mannan, "Fault detection and classification in chemical processes based on neural networks with feature extraction," ISA Transactions, Vol. 42, 651-664, 2003.
doi:10.1016/S0019-0578(07)60013-5 Google Scholar
27. Lingling, M., F. Xu, et al. "Earthquake prediction based on levenberg-marquardt algorithm constrained back-propagation neural network using DEMETER data," Proceedings of the 4th International Conference on Knowledge Science, Engineering and Management, 591-596, Belfast, Northern Ireland, UK, Sep. 2010. Google Scholar