1. Liaw, C. M., K. W. Hu, J. C. Wang, et al. "Development and operation control of a switched-reluctance motor driven flywheel," IEEE Transactions on Power Electronics, Vol. PP, No. 99, 1-1, 2018. Google Scholar
2. Sotelo, G. G., L. G. B. Rolim, A. C. Ferreira, et al. "High-speed flywheel system with switched reluctance motor/generator," IEEE Industry Applications Society Conference, V Induscon, Vol. 1, IEEE, 2002. Google Scholar
3. Inamura, S., T. Sakai, and K. Sawa, "A temperature rise analysis of switched reluctance motor due to the core and copper loss by FEM," IEEE Transactions on Magnetics, Vol. 39, No. 3, 1554-1557, 2003.
doi:10.1109/TMAG.2003.810358 Google Scholar
4. Castano, S. M., B. Bilgin, J. Lin, et al. "Radial forces and vibration analysis in an external-rotor switched reluctance machine," IET Electric Power Applications, Vol. 11, No. 2, 252-259, 2017.
doi:10.1049/iet-epa.2016.0197 Google Scholar
5. Materu, P. N. and R. Krishnan, "Estimation of switched reluctance motor losses," IEEE Transactions on Industry Applications, Vol. 28, No. 3, 668-679, 1992.
doi:10.1109/28.137456 Google Scholar
6. Chen, H., Y. Xu, and H. C. Iu, "Analysis of temperature distribution in power converter for switched reluctance motor drive," IEEE Transactions on Magnetics, Vol. 48, No. 2, 991-994, 2012.
doi:10.1109/TMAG.2011.2174968 Google Scholar
7. Sun, H., J. Gao, Y. Dong, et al. "Analysis of temperature field in switched reluctance motor based on finite-element," Proceedings of the 11th International Conference on Electrical Machines and Systems, Vol. 2, 597-601, 2008. Google Scholar
8. Boivie, J., "Iron loss model and measurements of the losses in a switched reluctance motor," 1993 Sixth International Conference on Electrical Machines and Drives. IET, 219-222, 1993. Google Scholar
9. Liu, C., X. Y. Zhu, Y. Du, et al. "Design and performance analysis of magnetic field modulated flux-switching permanent magnet machine based on electrical-thermal bi-directional coupling design method," Proceedings of the CSEE, Vol. 37, No. 21, 623-6245, 2017. Google Scholar
10. Yu, Q., B. Bilgin, and A. Emadi, "Loss and efficiency analysis of switched reluctance machines using a new calculation method," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 3072-3080, 2015.
doi:10.1109/TIE.2015.2392716 Google Scholar
11. Yang, Y., B. Bilgin, M. Kasprzak, et al. "Thermal management of electric machines," IET Electrical Systems in Transportation, Vol. 7, No. 2, 104-116, 2016.
doi:10.1049/iet-est.2015.0050 Google Scholar
12. Eit, M. A., P. Dular, F. Bouillault, et al. "Perturbation finite element method for efficient copper losses calculation in switched reluctance machines," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-4, 2017.
doi:10.1109/TMAG.2017.2655339 Google Scholar
13. Li, G. J., J. Ojeda, E. Hoang, et al. "Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles," IEEE Transactions on Magnetics, Vol. 47, No. 4, 839-847, 2011.
doi:10.1109/TMAG.2011.2104968 Google Scholar
14. Sun, Y., B. Zhang, Y. Yuan, and F. Yang, "Thermal characteristics of switched reluctance motor under different working conditions," Progress In Electromagnetics Research M, Vol. 74, 11-23, 2018.
doi:10.2528/PIERM18071301 Google Scholar
15. Liu, J., X. Zhang, H. Wang, et al. "Iron loss characteristic for the novel bearingless switched reluctance motor ," 2013 International Conference on Electrical Machines and Systems (ICEMS), 586-591, 2013. Google Scholar
16. Arbab, N., W. Wang, C. Lin, et al. "Thermal modeling and analysis of a double-stator switched reluctance motor," IEEE Transactions on Energy Conversion, Vol. 30, No. 3, 1209-1217, 2015.
doi:10.1109/TEC.2015.2424400 Google Scholar