1. Bond, P. R., "Space defense," Jane’s Space Systems and Industry 2011-2012, 27th Edition, 97-109, MPG Books Group, Surrey, UK, 2011. Google Scholar
2. Handbook of Space Technology, 1st Ed., 236-268, John Wiley & Sons Ltd., West Susex, UK, 2009.
3. Curtis, H. D., "Satellite attitude dynamics," Orbital Mechanics for Engineering Students, 3rd Edition, 543-617, Butterworth-Heinemann, 2013. Google Scholar
4. Donoho, D., "Compressed sensing," IEEE Trans. Inform. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
5. Zhang, Z., Y. Xu, J. Yang, X. Li, and D. Zhang, "A survey of sparse representation: Algorithms and applications," IEEE Access, Vol. 3, 490-530, May 2015.
doi:10.1109/ACCESS.2015.2430359 Google Scholar
6. Mishra, A. K. and R. S. Verster, "Compressive sensing: Acquisition and recovery," Compressive Sensing Based Algorithms for Electronic Defense, 1st Edition, 33-60, Springer, 2017. Google Scholar
7. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Trans. Signal Process., Vol. 63, No. 10, 2650-2662, 2015.
doi:10.1109/TSP.2015.2417507 Google Scholar
8. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE. Trans. Antennas. Propag., Vol. 53, 1600-1610, May 2005.
doi:10.1109/TAP.2005.846723 Google Scholar
9. Ciuonzo, D. and P. Salvo Rossi, "Noncolocated time reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Proc. Lett., Vol. 24, No. 4, 397-401, 2017.
doi:10.1109/LSP.2017.2661246 Google Scholar
10. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Signal Proc. Lett., Vol. 24, No. 7, 1024-1028, Jul. 2017.
doi:10.1109/LSP.2017.2704612 Google Scholar
11. Eldar, Y. C. and G. Kutyniok, "Xampling: Compressed sensing of analog signals," Compressed Sensing: Theory and Applications, 88-147, Cambridge University Press, UK, 2012. Google Scholar
12. Sharma, S. K., E. Lagunas, S. Chatzinotas, and B. Ottersten, "Application of compressive sensing in cognitive radio communications: A survey," IEEE Commun. Survey & Tutorials, Vol. 18, No. 3, 1838-1860, Feb. 2016.
doi:10.1109/COMST.2016.2524443 Google Scholar
13. Salari, S., I. M. Kim, F. Chan, and S. Rajan, "Blind compressive-sensing-based electronic warfare receiver," IEEE Trans. Aerospace and Electronic Systems, Vol. 53, No. 4, 2014-2030, Aug. 2017.
doi:10.1109/TAES.2017.2680686 Google Scholar
14. Ramezani, E., M. F. Sabahi, and S. M. Saberali, "Joint frequency and two-dimensional direction of arrival estimation for electronic support systems based on sub-Nyquist sampling," IET Radar, Sonar & Navigation, Vol. 12, No. 8, 889-899, Apr. 2018.
doi:10.1049/iet-rsn.2017.0477 Google Scholar
15. Yaghobi, M., M. Lexa, F. Millioz, and E. Davies, "A low complexity sub-Nyquist sampling system for wideband radar ESM receivers," Proc. IEEE Int. Conf. Acoust., Speech, Sig. Proc. (ICASSP), Florence, Italy, 2014. Google Scholar
16. Rajan, S. and C. Wu, "An overview of compressive sensing-based receivers,", Technical Report, TR2013-149, Defense Research and Development Canada, Ottawa, Canada, Nov. 2013. Google Scholar
17. Lin, E., "Compressed sensing for electronic radio frequency receiver: Detection, sensitivity, and implementation,", Ph.D. Dissertation, Dep. Elect. Eng., Wright State Univ., Dayton, OH, USA, 2016. Google Scholar
18. Streetly, M., Jane’s Radar and Electronic Warfare Systems 2011-2012, 23rd Ed., lhs Jane’s, Coulsdon, UK, 2011.
19. Sabahi, M. F., M. Masoumzadeh, and A. R. Forouzan, "Frequency-domain wideband compressive spectrum sensing," IET Communications, Vol. 10, No. 13, 1655-1664, 2016.
doi:10.1049/iet-com.2015.0718 Google Scholar
20. Mishali, M. and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE J. Sel. Top. Signal Process., Vol. 4, No. 2, 375-391, 2010.
doi:10.1109/JSTSP.2010.2042414 Google Scholar
21. Yang, E., X. Yan, and K. Qin, "Modulated wideband converter with run length limited sequences," IEICE Electron. Exp., Vol. 13, No. 17, 20160670, Sep. 2016.
doi:10.1587/elex.13.20160670 Google Scholar
22. Stein, S., O. Yair, D. Cohen, and Y. C. Eldar, "CaSCADE: Compressed carrier and DOA estimation," IEEE Trans. Process., Vol. 65, No. 10, 2645-2658, 2017.
doi:10.1109/TSP.2017.2664054 Google Scholar
23. Liu, L. and P. Wei, "A simplified sub-Nyquist receiver architecture for joint DOA and frequency estimation,", arXiv preprint arXiv:1604.05037v2, Feb. 2017. Google Scholar
24. Kumar, A. A., S. G. Razul, and C. M. S. See, "Carrier frequency and direction of arrival estimation with nested sub-Nyquist sensor array receiver," Proc. 23rd Eur. Signal Process. Conf. (EUSIPCO), 1167-1171, Aug. 2015.
doi:10.1109/EUSIPCO.2015.7362567 Google Scholar
25. Anal Kumar, A., S. G. Razul, and C. M. S. See, "Spectrum blind reconstruction and direction of arrival estimation of multi-band signals at sub-Nyquist sampling rates," Multidim. Syst. Sig. Proc., Vol. 29, No. 2, 643-669, Apr. 2018.
doi:10.1007/s11045-016-0455-7 Google Scholar
26. Chen, T., L. Liu, and D. Pan, "A ULA-based MWC discrete compressed sampling structure for carrier frequency and AOA Estimation," IEEE Access, Vol. 5, 14154-14164, 2017.
doi:10.1109/ACCESS.2017.2730223 Google Scholar
27. Liu, L. and P. Wei, "Joint DOA and frequency estimation with sub-Nyquist sampling for more sources than sensors," IET Radar Sonar Navig., Vol. 11, No. 12, 1798-1801, 2017.
doi:10.1049/iet-rsn.2017.0086 Google Scholar
28. Foucart, F. and H. Rauhut, "Sparse solutions of underdetermined systems," A Mathematical Introduction to Compressive Sensing, 1st Edition, 41-59, Springer, 2013. Google Scholar
29. Muthukrishnan, S., "Data streams: Algorithms and applications, foundations and trends," Theoretical Computer Science, Now Publishers, Boston, MA, 2005. Google Scholar
30. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., Vol. 56, No. 6, 2346-2356, Jun. 2008.
doi:10.1109/TSP.2007.914345 Google Scholar
31. Tipping, M. E., "Sparse Bayesian learning and relevance vector machine," J. Mach. Learn. Res., Vol. 1, 211-244, 2001. Google Scholar
32. Tzikas, D. G., A. C. Likas, and N. P. Galatsanos, "The variational approximation for Bayesian inference," IEEE Signal Process. Mag., Vol. 25, No. 6, 131-146, Nov. 2008.
doi:10.1109/MSP.2008.929620 Google Scholar
33. Lundgren, M., L. Svensson, and L. Hammarstrand, "Variational Bayesian expectation maximization for radar map estimation," IEEE Trans. Signal Process., Vol. 64, No. 6, 1391-1404, Mar. 2016.
doi:10.1109/TSP.2015.2496287 Google Scholar
34. Byeon, M., M. Lee, K. Kim, and J. Y. Choi, "Variational inference for 3-D localization and tracking of multiple cameras," IEEE Trans. Neural Netw. and Learn. Syst., Vol. 99, 1-15, Jan. 2019. Google Scholar
35. Arjoune, Y., N. Kaabouch, H. El Ghazi, and A. Tamtaoui, "Compressive sensing: Performance comparison of sparse recovery algorithms," 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, Jan. 2017. Google Scholar
36. Chi, Y., A. Pezeshki, L. Scharf, and R. Caderbank, "Sensitivity to basis mismatch in compressed sensing," IEEE Trans. Signal Process., Vol. 59, No. 5, 2182-2195, May 2011.
doi:10.1109/TSP.2011.2112650 Google Scholar
37. Tang, G., B. N. Bhaskar, P. Shah, and B. Recht, "Compressed sensing off the grid," IEEE Trans. Inform. Theory, Vol. 59, No. 11, 7465-7490, Nov. 2013.
doi:10.1109/TIT.2013.2277451 Google Scholar
38. Lu, Z., R. Ying, S. Jiang, P. Liu, and W. Yu, "Distributed compressed sensing off the grid," IEEE Signal Proc. Lett., Vol. 22, No. 1, 105-109, Jan. 2015.
doi:10.1109/LSP.2014.2349904 Google Scholar
39. Yang, Z., L. Xie, and C. Zhang, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Trans. Signal Process., Vol. 61, 38-43, 2013.
doi:10.1109/TSP.2012.2222378 Google Scholar
40. Das, A. and T. J. Sejnowski, "Narrowband and wideband off-grid direction-of-arrival estimation via sparse Bayesian learning," IEEE J. Ocean. Eng., Vol. 3, No. 1, 108-118, Jan. 2018.
doi:10.1109/JOE.2017.2660278 Google Scholar
41. Samet, H. and R. A. Earnshaw, "An overview of quadtrees octrees and related hierarchical data structures," Theoretical Foundations of Computer Graphics and CAD, Vol. 40, Springer, Berlin, Germany, 1988. Google Scholar
42. Donoho, D. L., Y. Tsaig, I. Drori, and J. L. Starck, "Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit," IEEE Trans. Inform. Theory, Vol. 58, No. 2, 1094-1121, 2012.
doi:10.1109/TIT.2011.2173241 Google Scholar