Vol. 167
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-02-23
Multi-Objective Genetic Algorithm Optimization of Frequency Selective Metasurfaces to Engineer Ku-Passband Filter Responses
By
Progress In Electromagnetics Research, Vol. 167, 19-30, 2020
Abstract
Metasurfaces enable a new avenue to create electrically thin multi-layer structures, on the order of one-tenth the central wavelength (λc), with engineered responses. Altering the sub-wavelength spatial features, e.g. λc/80, on the surface leads to highly tunable electromagnetic scattering characteristics. In this work, we develop an ultra-wideband frequency selective metasurface (FSmS) that completely encompasses the Ku-band from 12-18 GHz with steep band edges. The geometrical structure of the metasurfaces is optimized by a multi-objective genetic algorithm mimicking evolutionary processes. Analysis is performed from one- to four-layer metasurface structures with various thicknesses. Computational electromagnetic simulations for these frequency selective metasurfaces (FSmS) are presented and discussed. The concepts presented in this work can be applied to design metasurfaces and metamaterials from the microwave to the optical regimes.
Citation
Kenneth W. Allen Daniel J. P. Dykes David R. Reid Richard Todd Lee , "Multi-Objective Genetic Algorithm Optimization of Frequency Selective Metasurfaces to Engineer Ku-Passband Filter Responses," Progress In Electromagnetics Research, Vol. 167, 19-30, 2020.
doi:10.2528/PIER19112609
http://www.jpier.org/PIER/pier.php?paper=19112609
References

1. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Valentine, J., et al., "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376, 2008.
doi:10.1038/nature07247

4. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

5. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

7. Chen, H. T., et al., "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597, 2006.
doi:10.1038/nature05343

8. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, 1205, 2012.
doi:10.1038/ncomms2176

9. Wakatsuchi, H., et al., "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, No. 21, 214103, 2013.
doi:10.1063/1.4809535

10. Wakatsuchi, H., et al., "Waveform-dependent absorbing metasurfaces," Physical Review Letters, Vol. 111, No. 24, 245501, 2013.
doi:10.1103/PhysRevLett.111.245501

11. Wakatsuchi, H., et al., "Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals," Electronics Letters, Vol. 49, No. 24, 1530-1531, 2013.
doi:10.1049/el.2013.3010

12. Wakatsuchi, H., et al., "Responses of waveform-selective absorbing metasurfaces to oblique waves at the same frequency," Scientific Reports, Vol. 6, 31371, 2016.
doi:10.1038/srep31371

13. Wakatsuchi, H., "Time-domain filtering of metasurfaces," Scientific Reports, Vol. 5, 16737, 2015.
doi:10.1038/srep16737

14. Eleftheriades, G. V., "Electronics: Protecting the weak from the strong," Nature, Vol. 505, No. 7484, 490, 2014.
doi:10.1038/nature12852

15. Xu, H. X., et al., "Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch," Scientific Reports, Vol. 6, 38255, 2016.
doi:10.1038/srep38255

16. Genevet, P., et al., "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139-152, 2017.
doi:10.1364/OPTICA.4.000139

17. Balthasar Mueller, J. P., et al., "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.
doi:10.1103/PhysRevLett.118.113901

18. Khorasaninejad, M., et al., "Polarization-insensitive metalenses at visible wavelengths," Nano Letters, Vol. 16, No. 11, 7229-7234, 2016.
doi:10.1021/acs.nanolett.6b03626

19. Byrnes, S. J., et al., "Designing large, high-efficiency, high-numerical-aperture, transmissive metalenses for visible light," Optics Express, Vol. 24, No. 5, 5110-5124, 2016.
doi:10.1364/OE.24.005110

20. Filippo, C., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016.

21. Xu, H. X., et al., "Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking," Annalen der Physik, Vol. 529, No. 5, 1700045, 2017.
doi:10.1002/andp.201700045

22. Zhao, J., et al., "Fast design of broadband terahertz diffusion metasurfaces," Optics Express, Vol. 25, No. 2, 1050-1061, 2017.
doi:10.1364/OE.25.001050

23. Zhang, Y., et al., "Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution," Scientific Reports, Vol. 6, 26875, 2016.
doi:10.1038/srep26875

24. Miller, P., "Ka-band — The future of satellite communication," TELE-Satellite and Broadband, Vol. 1, No. 9, 12-14, 2007.

25. Padilla, P., "Electronically reconfigurable transmit array at Ku band for microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2571-2579, 2010.
doi:10.1109/TAP.2010.2050426

26. Borji, A., D. Busuioc, and S. Safavi-Naeini, "Efficient, low-cost integrated waveguide-fed planar antenna array for Ku-band applications," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 336-339, 2009.
doi:10.1109/LAWP.2008.2004973

27. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650

28. Reid, D. R. and G. S. Smith, "Design and optimization of Fresnel zone plates using a genetic algorithm and a full-electromagnetic simulator," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2223-2227, 2009.
doi:10.1002/mop.24520

29. Scott, M. M., et al., "Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1298-1301, 2016.
doi:10.1002/mop.29786

30. Allen, K. W., et al., "An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity," Review of Scientific Instruments, Vol. 87, 054703, 2016.
doi:10.1063/1.4948388

31. Monticone, F. and A. Alu, "Invisibility exposed: Physical bounds on passive cloaking," Optica, Vol. 3, No. 7, 718-724, 2016.
doi:10.1364/OPTICA.3.000718

32. Maloney, J. G., R. T. Lee, and D. W. Landgren, "Genetic algorithms for fragmented aperture antennas: A complete evaluation of a 24-bit design," Radio Science Meeting (Joint with IEEE AP-S Symposium), 2013 USNC-URSI, 115-115, 2013.
doi:10.1109/USNC-URSI.2013.6715421

33. Munk, B. A., Frequency Selective Surface Theory and Design, Wiley & Sons, New York, 2000.
doi:10.1002/0471723770

34. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space focused-beam measurement system," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392