1. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Valentine, J., et al., "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376, 2008.
doi:10.1038/nature07247 Google Scholar
4. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
5. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
6. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
7. Chen, H. T., et al., "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597, 2006.
doi:10.1038/nature05343 Google Scholar
8. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, 1205, 2012.
doi:10.1038/ncomms2176 Google Scholar
9. Wakatsuchi, H., et al., "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, No. 21, 214103, 2013.
doi:10.1063/1.4809535 Google Scholar
10. Wakatsuchi, H., et al., "Waveform-dependent absorbing metasurfaces," Physical Review Letters, Vol. 111, No. 24, 245501, 2013.
doi:10.1103/PhysRevLett.111.245501 Google Scholar
11. Wakatsuchi, H., et al., "Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals," Electronics Letters, Vol. 49, No. 24, 1530-1531, 2013.
doi:10.1049/el.2013.3010 Google Scholar
12. Wakatsuchi, H., et al., "Responses of waveform-selective absorbing metasurfaces to oblique waves at the same frequency," Scientific Reports, Vol. 6, 31371, 2016.
doi:10.1038/srep31371 Google Scholar
13. Wakatsuchi, H., "Time-domain filtering of metasurfaces," Scientific Reports, Vol. 5, 16737, 2015.
doi:10.1038/srep16737 Google Scholar
14. Eleftheriades, G. V., "Electronics: Protecting the weak from the strong," Nature, Vol. 505, No. 7484, 490, 2014.
doi:10.1038/nature12852 Google Scholar
15. Xu, H. X., et al., "Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch," Scientific Reports, Vol. 6, 38255, 2016.
doi:10.1038/srep38255 Google Scholar
16. Genevet, P., et al., "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139-152, 2017.
doi:10.1364/OPTICA.4.000139 Google Scholar
17. Balthasar Mueller, J. P., et al., "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.
doi:10.1103/PhysRevLett.118.113901 Google Scholar
18. Khorasaninejad, M., et al., "Polarization-insensitive metalenses at visible wavelengths," Nano Letters, Vol. 16, No. 11, 7229-7234, 2016.
doi:10.1021/acs.nanolett.6b03626 Google Scholar
19. Byrnes, S. J., et al., "Designing large, high-efficiency, high-numerical-aperture, transmissive metalenses for visible light," Optics Express, Vol. 24, No. 5, 5110-5124, 2016.
doi:10.1364/OE.24.005110 Google Scholar
20. Filippo, C., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016. Google Scholar
21. Xu, H. X., et al., "Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking," Annalen der Physik, Vol. 529, No. 5, 1700045, 2017.
doi:10.1002/andp.201700045 Google Scholar
22. Zhao, J., et al., "Fast design of broadband terahertz diffusion metasurfaces," Optics Express, Vol. 25, No. 2, 1050-1061, 2017.
doi:10.1364/OE.25.001050 Google Scholar
23. Zhang, Y., et al., "Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution," Scientific Reports, Vol. 6, 26875, 2016.
doi:10.1038/srep26875 Google Scholar
24. Miller, P., "Ka-band — The future of satellite communication," TELE-Satellite and Broadband, Vol. 1, No. 9, 12-14, 2007. Google Scholar
25. Padilla, P., "Electronically reconfigurable transmit array at Ku band for microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2571-2579, 2010.
doi:10.1109/TAP.2010.2050426 Google Scholar
26. Borji, A., D. Busuioc, and S. Safavi-Naeini, "Efficient, low-cost integrated waveguide-fed planar antenna array for Ku-band applications," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 336-339, 2009.
doi:10.1109/LAWP.2008.2004973 Google Scholar
27. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650 Google Scholar
28. Reid, D. R. and G. S. Smith, "Design and optimization of Fresnel zone plates using a genetic algorithm and a full-electromagnetic simulator," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2223-2227, 2009.
doi:10.1002/mop.24520 Google Scholar
29. Scott, M. M., et al., "Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1298-1301, 2016.
doi:10.1002/mop.29786 Google Scholar
30. Allen, K. W., et al., "An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity," Review of Scientific Instruments, Vol. 87, 054703, 2016.
doi:10.1063/1.4948388 Google Scholar
31. Monticone, F. and A. Alu, "Invisibility exposed: Physical bounds on passive cloaking," Optica, Vol. 3, No. 7, 718-724, 2016.
doi:10.1364/OPTICA.3.000718 Google Scholar
32. Maloney, J. G., R. T. Lee, and D. W. Landgren, "Genetic algorithms for fragmented aperture antennas: A complete evaluation of a 24-bit design," Radio Science Meeting (Joint with IEEE AP-S Symposium), 2013 USNC-URSI, 115-115, 2013.
doi:10.1109/USNC-URSI.2013.6715421 Google Scholar
33. Munk, B. A., Frequency Selective Surface Theory and Design, Wiley & Sons, 2000.
doi:10.1002/0471723770
34. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space focused-beam measurement system," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392 Google Scholar