Vol. 99
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-02-10
A Miniature Implanted Antenna for UHF RFID Applications
By
Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020
Abstract
In this paper, the design of a miniature antenna dedicated to be implanted in a small animal and intended to work in the European UHF RFID (865-868 MHz) band is presented. One of the goals of this work is the miniaturization of the radiating element while preserving its efficiency to allow a reliable communication between an external interrogating reader and the implanted device. The radiating element is a small rectangular loop antenna associated with a dipole allowing impedance matching. The antenna has dimensions of 2.4 mm x 25.4 mm x 0.5 mm and integrates an Impinj Monza 4 chip presenting an impedance of 5.5-j74 Ohms at 868 MHz. The antenna is designed and optimized by using the ANSYS HFSS software. The obtained results show a simulated radiation efficiency of 0.7% and simulated total gain of -17.5 dBi. A prototype is realized, and RSSI measurements have demonstrated the possibility of reliable wireless communications between the implanted antenna and an external reader. In addition, Specific Absorption Rate (SAR) calculation indicates that this implanted antenna meets the required safety regulations.
Citation
Van Hieu Nguyen, Aliou Diallo, Philippe Le Thuc, Robert Staraj, Stephane Lanteri, and Georges F. Carle, "A Miniature Implanted Antenna for UHF RFID Applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.
doi:10.2528/PIERC19102905
References

1. R. S. M. and B. Jacobson, "Endoradiosonde," Nature, Vol. 179, 1239-1240, 1957.
doi:10.1038/1791239a0

2. Qureshi, W. A., "Current and future applications of the capsule camera," Nature Rev. Drug Disc., Vol. 3, 7-10, May 2004.
doi:10.1038/nrd1385

3. Merli, F., B. Fuchs, J. R. Mosig, and A. K. Skrivervik, "The effect of insulating layers on the performance of implanted antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 21-31, 2011.
doi:10.1109/TAP.2010.2090465

4. Karlsson, A., "Physical limitations of antennas in a lossy medium," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2027-2033, 2004.
doi:10.1109/TAP.2004.832335

5. Furse, C. M. and A. Chrysler, "A history & future of implantable antennas," IEEE Antennas and Propagation Society International Symposium (APSURSI), 527-528, 2014.
doi:10.1109/APS.2014.6904595

6. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges," Bioelectromagn. Wiley Period. Inc., Vol. 35, No. 1, 1-15, 2014.
doi:10.1002/bem.21813

7. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3568-3575, 2012.
doi:10.1109/TAP.2012.2201078

8. Catarinucci, L., R. Colella, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, and L. Tarricone, "Near field UHF RFID antenna system enabling the tracking of small laboratory animals," Int. J. Antennas Propag., Vol. 2013, 1-10, 2013.
doi:10.1155/2013/713943

9. Bakore, R., J. C. West, C. Hutchens, and R. Ahmed, "Design of a proposed folded dipole antenna for use with an implantable RFID tag at 915 MHz," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2085-2086, Orlando, FL, USA, 2013.

10. Garcia-Miquel, A., B. Medina-Rodr´ıguez, N. Vidal, F. M. Ramos, E. Roca, and J. M. Lopez-Villegas, "Design and characterization of a miniaturized implantable UHF RFID tag based on LTCC technology," 11th European Conference on Antennas and Propagation (EUCAP), 1024-1026, 2017.

11. Dubok, A. and A. B. Smolders, "Increased operational range for implantable UHF RFID antennas," 8th Eur. Conf. Antennas Propag. (EuCAP 2014), 1749-1753, 2014.
doi:10.1109/EuCAP.2014.6902131

12. Jeevani, J. M., W. Jayasinghe, and D. Uduwawala, "A novel multiband miniature planar inverted f antenna design for bluetooth and WLAN applications," International Journal of Antennas and Propagation, 1-6, 2015.

13. Skrivervik, A. K., "Implantable antennas: The challenge of efficiency," 7th Eur. Conf. Antennas Propagation, EuCAP 2013, 3627-3631, 2013.

14. Rodriguez, M., C. Furse, and R. Franklin, "Manufacturing considerations for implantable antennas," IEEE Antennas Propag. Soc. AP-S Int. Symp., 2087-2088, 2013.

15. Nguyen, V. H., A. Diallo, P. Le Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "Wireless interrogation of small animal phantoms with a miniature implanted UHF RFID tag," Antenna Measurements & Applications (CAMA), IEEE International Conference, Vol. 3, 306-309, 2017.
doi:10.1109/CAMA.2017.8273434

16. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2806-2812, 2009.
doi:10.1109/TAP.2009.2027197

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

18. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Report Documentation, Dept. of Physics AFOSR-TR-96 King’s College London, UK, 1996.
doi:10.1088/0031-9155/41/11/003

19. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wirel. Components Lett., Vol. 17, No. 12, 2007-2009, 2007.

20. Perrissol, P., M. Monedero, R. Ndashymie, A. Diallo, P. Le Thuc, R. Staraj, and G. F. Carle, "Wireless interrogation of an implanted temperature sensor in a mouse," Proceed. IEEE International Conference on RFID-Technologies and Applications (RFID-TA), 52-55, 2012.

21. ERC Recommendation (70-03) [Online], Available: http://www.erodocdb.dk/docs/doc98/off-pdf/rec7003e.pdf.

22. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, 2015.

23. Fujimoto, K. and H. Morishita, Modern Small Antenna, Cambridge University Press, 2013.
doi:10.1017/CBO9780511977602

24. Schantz, H. G., "A near field propagation law & a novel fundamental limit to antenna gain versus size," IEEE APS Conf., Vol. 2, 4-7, July 2005.

25. Orfanidis, S. J., Electromagnetic Waves and Antennas, Prentice-Hall, 2003.

26. Monza 4 RFID Impinj chip datasheet [Online], Available: https://support.impinj.com/hc/enus/articles/202756908-Monza-4-RFID-Tag-Chip-Datasheet.

27. Dobkin, D. M., The RF in RFID, UHF RFID in Practice, 2nd Ed., Amsterdam, Newnes, 2012.

28. Luh, Y.-P. and Y.-C. Liu, "Measurement of effective reading distance of UHF RFID passive tags," Mod. Mech. Eng., Vol. 03, No. 03, 115-120, 2013.
doi:10.4236/mme.2013.33016

29. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

30. Bakore, R., J. C.West, C. Hutchens, and R. Ahmed, "Design of a proposed folded dipole antenna for use with an implantable RFID tag at 915 MHz," Antennas and Propagation Society International Symposium (APSURSI), 2085-2086, 2013.

31. Galehdar, A., D. V. Thiel, and S. G. O’Keefe, "Antenna efficiency calculations for electrically small, RFID antennas," IEEE Antenna and Wireless Propagation Letters, 2007.

32. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. Abu Bakar Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1322-1325, 2015.

33. Perrissol, P., A. Diallo, P. Le Thuc, R. Staraj, and G. F. Carle, "Performance of a cross dipole antenna dedicated to biological telemetry," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2174-2177, 2014.
doi:10.1109/EuCAP.2014.6902240

34., Agilent 85070E Dielectric Probe Kit [Online] Available, http://na.support.keysight.com/materials/help/85070.pdf.

35., RFID Impinj Speedway Revolution R420 reader [Online], Available: https://support.impinj.com/hc/en-us/articles/202755358-Speedway-Revolution-Installation-Operations-Guide.

36. Phatra, C. and P. Krachodnok, "A circularly polarized antenna for UHF RFID reader," 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (EC, 1-4, 2014.

37. Lee, B. G. and W. Y. Chung, "Multitarget three-dimensional indoor navigation on a pda in a wireless sensor network," IEEE Sens. J., Vol. 11, No. 3, 799-807, March 2011.
doi:10.1109/JSEN.2010.2076802

38. Liu, C., Y.-X. Guo, and S. Xiao, "A review of implantable antennas for wireless biomedical devices," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), 2016.

39. Othman, N., N. A. Samsuri, M. K. A. Rahim, and N. A. Elias, "SAR in the presence of conductive medical implant at 0.9, 1.8 and 2.4 GHz due to close proximity antenna," 10th Eur. Conf. on Antennas Propag. (EuCAP), 8-12, 2016.

40. Zhao, Y., R. L. Rennaker, C. Hutchens, and T. S. Ibrahim, "Implanted miniaturized antenna for brain computer interface applications: analysis and design," PloS One, Vol. 9, No. 7, 1-10, 2014.

41. IEEE Standards Coordinating Committee, IEEE C95, , 1-2009: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, April 2006.