Search Results(13735)

2021-02-15
PIER M
Vol. 101, 37-45
Laser Monitor for Studying the Combustion of Thin Layers of Metal Nanopowders
Fedor Alexandrovich Gubarev , Andrei Vladimirovich Mostovshchikov , Anatoliy Ignatievich Fedorov and Lin Li
In this paper, we propose a laser monitor with a horizontally located observation area for studying laser initiation and combustion of thin layers of metal nanopowders. Three configurations of the optical scheme with different inputs of igniting laser radiation and different magnifications are considered. Visualization of combustion of a 0.4 mm layer of aluminum nanopowder demonstrated the possibility of studying the surface of a nanopowder thin layer during combustion using a laser monitor. The bright glowing of the sample and the bright radiation of the igniting laser do not interfere with the imaging of the surface. The proposed system allows us to study surface changes caused by the propagation of combustion waves. It is demonstrated that in the region of laser initiation, combustion proceeds in one-stage, and combustion products are formed during laser action. Outside the initiation area, combustion proceeds in two stages. The results reveal the prospects for designing a laser monitor for studying the combustion of thinner layers of metal nanopowders.
2021-02-14
PIER Letters
Vol. 96, 97-103
Multi-Mode Substrate Integrated Waveguide Wideband Filter Design with Wide Stopband Rejection Using Complementary Split Ring Resonators and Defected Ground Structures
Halima Ammari , Farouk Grine , Mohamed Lahdi Riabi and Mohamed Toufik Benhabiles
This paper proposes a novel wideband filter based on a quintuple-mode substrate integrated waveguide (SIW) resonator. Two metallic vias loading a rectangular SIW cavity diagonal line are used to excite five resonant modes. A pair of the complementary split ring resonators (CSRRs) etched on the top plane to further control the degenerating modes. A quintuple-mode filter is implemented based on this resonator. One transmission zero (TZ) at the lower frequency side and three TZs at the upper frequency side were obtained to improve the filter selectivity. A seven-order filter with wide stopband rejection is investigated under the use of a pair of microstrip low-pass filters (LPFs). The proposed SIW cavity filter has been designed, manufactured, and measured as an experimental example to verify the proposed concept. Simulation and measurement results agree with 49.8% of fractional bandwidth at 5.3 GHz central frequency.
2021-02-14
PIER B
Vol. 91, 19-37
Isolation Improvement Using Asymmetric Radiators and Ground Plane Diversity Mechanism in a Six-Element UWB MIMO Antenna Design
Aicha Mchbal , Naima Amar Touhami , Hanae Elftouh and Aziz Dkiouak
A compact six elements MIMO antenna is presented for UWB applications. The proposed MIMO array consists of non-identical monopole antennas with distinctive ground planes so as to nullify mutual coupling amid side-by-side elements. Also, by properly placing the antenna elements exploiting cross polarization diversity, a good isolation throughout the operating bandwidth is achieved. Moreover, two parasitic inverted L stubs in combination with small rectangular stubs are employed near the middle-placed radiators and corner placed radiators, respectively, in order to extend the frequency band and enhance the impedance matching. Results show a good reflection coefficient about -10 dB, a high isolation >20 dB, an envelope correlation coefficients <0.15, a high diversity gain equal to 9.3, and finally, a maximum value of efficiency for both used antenna elements which is about 78% and 60% with 6 and 5 dBi of gain, respectively. They validate the proposed MIMO antenna efficiency for UWB diversity applications.
2021-02-14
PIER C
Vol. 109, 257-273
Wide Bandwidth Low Profile PIFA Antenna for Vehicular Sub-6 GHz 5G and V2X Wireless Systems
Ahmad Yacoub , Mohamed Khalifa and Daniel N. Aloi
This paper introduces a low profile wideband Planar Inverted-F antenna (PIFA) for vehicular applications in the 5G systems (below 6 GHz) and Vehicle-to-Everything (V2X) communications. The antenna covers a wide range of bandwidth which operates from 617 MHz to 6 GHz while having an acceptable filtering on the GNSS bands. This design's physical dimensions and electrical performance make it suitable for low profile wireless applications in the automotive field. Measurement data on Ground plane (GND) and on vehicle are presented from a properly cut metal sheet prototype along with simulated results of the model design. Simulation and measurement results are discussed in terms of VSWR, surface current distribution, radiation patterns, antenna efficiency, and linear average gain (LAG).
2021-02-14
PIER C
Vol. 109, 243-256
Research on Three-Dimensional Imaging Method Using Tensor for Electrical Impedance Tomography (EIT)
Qi Wang , Lei Yu , Xiuyan Li , Xiaojie Duan , Xiaojie Li , Huimei Ma , Jixuan Lu , Jianming Wang and Huaxiang Wang
Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Many algorithms have been proposed for two-dimensional EIT reconstruction. However, since the human thorax has the characteristic of three-dimensions, EIT is a truly three-dimensional imaging problem. In this paper, we propose a three-dimensional imaging method using tensors for EIT. A tensor EIT model is established by EIT data and the Tucker decomposition is used to obtain the tensor basis. The tensor basis can form a new way to reconstruct image in three-dimensional space. Experiment results revealed that the data structural information of image can be fully used by the tensor method. A comparison of the peak signal to noise ratio (PSNR) shows that the newly proposed method performs better than other methods, i.e. the Dynamic Group Sparse TV algorithm and Tikhonov algorithm. The newly proposed method is closer to the ground truth, thus it can more accurately reflect the state of a lung than two-dimensional EIT. Finally, the EIT experiment is carried out to evaluate the proposed method. The experimental results show that the accuracy of reconstruction based on the new method is efficiently improved.
2021-02-13
PIER Letters
Vol. 96, 91-96
Memory Reduced Half Hierarchal Matrix (h-Matrix) for Electrodynamic Electric Field Integral Equation
Yoginder Kumar Negi
This letter shows 50 percent memory saving for a regular Hierarchal Matrix (H-matrix) by converting it to symmetric H-matrix for large electrodynamic problems. Only the upper diagonal near-field and compressed far-field matrix blocks of the H-matrix are stored. Far-field memory saving is achieved by computing and keeping the upper diagonal far-field blocks leading to compressed column block U and row block V at a level. Due to symmetry, the lower diagonal far-field H-matrix compressed column is the transpose of V, and the compressed row block is the transpose of U. Storage and computation of lower diagonal blocks are not required. Similarly, in the case of near-field, only the upper diagonal near-field blocks are computed and stored. Numerical results show that the proposed memory reduction procedure retains the accuracy and cost of regular H-matrix.
2021-02-13
PIER B
Vol. 90, 187-205
An Overview of Rainfall Fading Prediction Models for Satellite Links in Southern Africa
Djuma Sumbiri and Thomas Joachim Odhiambo Afullo
This work presents an overview of rainfall fading models over satellite links in South Africa using three years of rainfall data collected by the Joss-Waldvogel RD-80 disdrometer in Durban, South Africa (29˚52'S, 30˚58'E), alongside a colocated Ku-band satellite TV link. Different drop size distribution models, such as Lognormal, Gamma, Weibull, and the Optimised drop size distribution model for Equatorial Africa, are used to formulate the rainfall attenuation models used in this study. Thereafter, the formulated attenuation models are used to convert rainfall rate time series data to predicted rainfall attenuation time series. In addition, both the ITU-R model and the Synthetic Storm Techniques are applied for comparison with the above rainfall attenuation models alongside experimental measurements over the 12.6 GHz satellite TV link from Intelsat-20 (IS-20) located at 68.5˚E on the azimuth angle of 57.5˚ with respect to Durban.
2021-02-13
PIER C
Vol. 109, 227-241
Design and Analysis of a Compact High Gain Wideband Monopole Patch Antenna for Future Handheld Gadgets
Abhishek Kumar Chaudhary and Murli Manohar
In this article, a compact super wideband (SWB) monopole antenna with a wide-frequency is designed and analyzed for future handheld gadgets. The designed antenna is made by etching four slots on a round cornered rectangular patch which are connected through a 50-Ω triangular tapered microstrip transmission feedline (TTMTF) for broadband impedance matching. A triangular slot is etched on the semicircular partial ground plane, which helps to shift the lower frequency edge of 1.07 GHz to 1 GHz. The experimental results show that the proposed antenna operates over a wide frequency range of 1-30 GHz with a reflection coefficient of less than -10 dB. The antenna acquires a compact dimension of 25 x 16 x 0.787 mm3. Further, an equivalent circuit method is used to analyze the proposed structure, and its outcome is compared with the simulated and experimental results. The peak gain of the designed antenna is about 5.5 dBi. The proposed antenna has low cross-polarization even at higher frequencies. Finally, the time domain analysis is also carried out to see the distortion between transmitting and receiving modes. The designed antenna can be used for various wireless applications such as NB-IoT, GPS, Wi-BRO, ISM band, IRNSS, WiMAX, X-band, Ku-band, and K-band.
2021-02-11
PIER C
Vol. 110, 1-14
Applicability Analysis of the Phase Scanning in Antenna Arrays of Chirp Pulse Radars
Volodymyr G. Galushko and Dmytro M. Vavriv
In this paper, the space-and-time structure of the output signal of the antenna array (AA) of a chirp pulse radar is investigated in dependence on the frequency sweep range of the probe signal. Expressions are derived for calculating the output signals of the AA of a chirp pulse radar after optimal filtering in the case of beamforming using phase shifters and/or time-delay lines. Distortions of the space-time power pattern pertaining to the phase scanning method are analyzed in dependence on the frequency chirp range and scan angle. It is shown that these distortions are similar to the effects observed in the case of using taper windows for sidelobe suppression in the time and space (angular) domains. Based on the results obtained an applicability condition is suggested for the phase scanning in AAs of chirp pulse radars. It is shown that minor violations of this condition result in decreasing the amplitude and broadening of the main lobe and sidelobes in the AA space-time power pattern. In the case of strong violations of the applicability condition for the phase scanning the sidelobes of the angular directional pattern degrade, merging with the main one into a single quite broad maximum. The considered effects lead to deterioration of the range and azimuth resolution capabilities of radars and should be taken into account when selecting the taper window parameters.
2021-02-09
PIER Letters
Vol. 96, 81-90
Wideband Harmonic Suppressed Compact Rat-Race Coupler Using Triple Stub m-Shape Unit
Vuppuloori Ravi Reddy , Vamsi Krishna Velidi and Bhima Prabhakara Rao
A design of a compact wideband harmonic suppressed rat-race coupler (RRC) is presented in this paper. The present coupler is obtained by replacing each quarter wave length transmission line of a conventional double section rat-race coupler with a triple stub M-shape unit. The M-shape unit with 3 stubs is used to enhance the bandwidth, suppress the harmonics, and reduce the size of the coupler. Design guidelines are established using the lossless transmission line model. Theoretical predictions are verified by fabricating a prototype coupler. The proposed double section RRC provides harmonic suppression up to seventh of operating frequency and 62.4% size reduction with wide bandwidth, which is useful for wireless communication systems.
2021-02-09
PIER B
Vol. 91, 1-8
Diffraction Radiation Generated by a Density-Modulated Electron Beam Flying Over the Periodic Boundary of the Medium Section. I. Analytical Basis
Yuriy Sirenko , Seil S. Sautbekov , Nataliya Yashina and Kostyantyn Sirenko
The paper is focused on reliable modeling of the effects associated with the resonant transformation of the field of a plane, density modulated electron beam, flying over the periodically uneven boundary of a natural or artificial medium, in the field of volume outgoing waves. Here, the general information (analytical basis) is presented on the peculiarities and principal characteristics of electromagnetic fields arising in the situations under consideration, on the procedures for regularization of model boundary value problems describing these situations, and on possible eigenmodes of periodic structures. Without relying on this information, it is impossible to advance considerably effectively in solving numerous urgent physical problems(establishing the conditions providing anomalously high levels of Vavilov-Cherenkov and/or Smith-Purcell radiation; diagnostics of beams of charged particles, artificial materials and media) and in practical implementation of new knowledge aboutthe effects of diffraction radiation and their wave analogues in new devices and instruments of optoelectronics, high-power electronics, antenna, and accelerator technology.
2021-02-09
PIER C
Vol. 109, 217-225
An Improved Conversion Efficiency of 1.975 to 4.744 GHz Rectenna for Wireless Sensor Applications
Rashmi Pandey , Ashok Kumar Shankhwar and Ashutosh Singh
This article discusses the design analysis of a wideband rectenna (Antenna + Rectifier). It empowers low power devices, battery-less power sensors, and many Internet of Things (IoT) devices. The main focus of this work is divided into two parts. First, to develop the power to operate the wideband frequency of operation without system complexity. To obtain rectifier bandwidth sufficiently, L-section impedance matching with dual Schottky diode HSMS270B is proposed. Second, to improve the rectenna efficiency and output DC power. Wideband rectenna harvests the maximum RF power of 30.590 dBm, 1145.51 mW, 10.703 Volts at 3.2 GHz. The harvested power is easily available to power up the low powered sensor such as gas sensor (500-800 mW), pressure sensor (10-15 mW), and temperature sensor (0.5-5 mW). The peak conversion efficiency of the rectenna is 88.58% at 0 dBm, 34.70% at 10 dBm, and 53.52% at 20 dBm under the load resistance of 100 KΩ. The proposed work shows a 20-25% improvement in conversion efficiency with this approach. For efficient RF energy harvesting applications, the proposed rectenna is capable of covering a wideband application from 1.975 to 4.744 GHz with a single radiation patch. This shows that the novel approach of the considered work and the proposed rectenna has the specialty to capture more energy from a wide area at once.
2021-02-09
PIER M
Vol. 101, 25-35
Spoof Surface Plasmon Polaritons and Half-Mode Substrate Integrated Waveguide Based Compact Band-Pass Filter for Radar Application
Keyur Mahant , Hiren Mewada , Amit Patel , Alpesh D. Vala and Jitendra P. Chaudhari
A band-pass filter using spoof surface plasmon polaritons (SSPPs) and half-mode substrate integrated waveguide (HMSIW) for Ka-band RADAR application is proposed. In order to achieve the band-pass response, an HMSIW structure with high pass response and SSPPs with band-stop response are combined. Moreover, to investigate effects of geometric dimensions on the frequency characteristics of the proposed band-pass filter are examined by parametric analysis. It has been observed that lower cut-off and upper frequencies can be individually controlled just by changing the structural parameters. High Frequency Structure Simulator (HFSS) software was utilized to simulate the proposed structure. HFSS is the simulation tool for complex 3-D geometries and uses the finite element method (FEM). To validate the functionality, the proposed band-pass filter is fabricated on the dielectric material RT duroid 5880 with the dielectric constant εr = 2.2, height h = 0.508 mm, and dissipation factor tanδ = 4 × 10-4. The measured result shows return loss better than -10 dB and insertion loss less than 1.25 dB with the 3 dB fractional bandwidth (FBW) of 44.02% at the center frequency of 7.95 GHz.
2021-02-08
PIER Letters
Vol. 96, 73-80
Extremely Close Integration of Dual Band Sub-6 GHz 4G Antenna with Unidirectional mmWave 5G Antenna
Shakeel Ahmad Malik , Khalid Muzaffar , Ajaz Hussain Mir and Ayaz Hassan Moon
An extremely close integration of a dual band sub-6 GHz 4G antenna with a 28 GHz 5G antenna is proposed in this article. Firstly, a dual band 4G LTE (Long term Evolution) antenna is designed on an inexpensive substrate. The proposed antenna operates in the 2.5 GHz and 3.5 GHz LTE bands. The antenna has dimensions of 63 x 5.6 x 0.5 mm3, indicating an electrically small design. As the width of the antenna is less than 7 mm, it could be easily mounted on commercial mobile devices. The patterns for both the bands are almost omnidirectional as desired by the low frequency antennas. The proposed antennas do not carry any additional miniaturization or tuning circuitry hence simplifying fabrication process. Secondly, an angled dipole with Yagi topology is proposed, which works in the 28 GHz mmWave 5G band. The angled dipole has dimensions 28.3 x 5.6 x 0.5 mm3, which is also electrically compact and has a high front to back ratio. The microwave and millimetre wave antennas are placed orthogonally for minimal mutual coupling. The characteristics of both the antennas are not affected by the presence of the other element. Detailed results are shown in this article.
2021-02-07
PIER C
Vol. 109, 205-216
System of Material Objects in Electrodynamic Volumes
Mikhail Nesterenko , Viktor A. Katrich , Sergey L. Berdnik and Victor I. Kijko
In general, the problem of the excitation (radiation, scattering) of electromagnetic fields by a system of finite-dimensional material objects in arbitrary electrodynamic volumes is formulated. On the basis of the impedance concept, the problem is reduced to solving two-dimensional integral equations for electric surface currents on material objects. A physically correct transition from the obtained integral equations to a system of one-dimensional equations for currents on electrically thin impedance vibrators (monopoles) with electrophysical and geometric parameters that can be irregular along their length is made. As an example, a system of two monopoles with a variable surface impedance located in a rectangular waveguide is considered. The problem was solved by the generalized method of induced electromotive forces (EMF). A distinctive feature of this method is that the current distribution functions found by the asymptotic averaging method are used to solve integral equations for currents. The numerical and experimental results concerning electrodynamic characteristics of the structure under consideration are presented.
2021-02-07
PIER C
Vol. 109, 187-203
Innovative Microwave Design of Frequency-Independent Passive Phase Shifter with LCL-Network and Bandpass NGD Circuit
Jamel Nebhen and Blaise Ravelo
The present paper develops an application of the bandpass (BP) negative group delay (NGD) circuit for the design of an independent frequency phase shifter (PS). The design principle of the innovative PS is constituted by an inductor-capacitor-inductor (LCL) T-shape passive cell in cascade with RLC-network series-based BP NGD circuits. The S-matrix analytical model of the LCL-NGD PS is established in function of the circuit elements. Then, the design equations of the PS elements in the function of the expected PS value and center frequency are formulated. The NGD PS topology is validated with a comparison between the calculated and simulated results of phase, transmission coefficient, and reflection coefficients. As expected, a very good correlation between the analytical model and the simulation is confirmed by the obtained results. It is found that the LCL-NGD PS presents an outstandingly flat phase shift of -120°±5° with 1.2 GHz center frequency. The LCL-NGD PS operates with about 18% relative bandwidth. The PS reflection coefficient presents a magnitude flatness around -3±1.5 dB. Moreover, the reflection coefficient is kept better than -15 dB. The sensitivity of the LCL-NGD PS performances over the NGD circuit element ±5% relative variation is studied. It is found how the PS value and center frequencychange with the R, L, and C components of the NGD circuit.
2021-02-07
PIER M
Vol. 101, 9-23
Spatial Magnetic Field Calculations for Coreless Circular Coils with Rectangular Cross-Section of Arbitrary Turn Numbers
Yiming Wang , Xu Xie and Hengfeng Wang
In a wireless magnetic induction communication system, the magnetic field distribution of the current-carrying coil affects the communication effect between the communication transceiver and receiver. In the study of magnetic field distribution, it was found that magnetic induction intensity and magnetic flux were important parameters to measure the effectiveness of communication. Aiming at the circular coils with rectangular cross-section of any turn numbers, this paper proposed an improved algorithm to calculate the magnetic induction intensity at any spatial position based on Biot-Savart law. At the same time, the calculation formula of the magnetic flux at the receiving point was also given. The coils were modeled and simulated with COMSOL software. The correctness of the improved algorithm was verified and compared with the traditional formula and simulation results, especially in the near field, which provided an important theoretical support for the further study of mutual inductance in the wireless magnetic induction communication system.
2021-02-06
PIER B
Vol. 91, 9-17
Diffraction Radiation Generated by a Density-Modulated Electron Beam Flying Over the Periodic Boundary of the Medium Section. II. Impact of True Eigen Waves
Yuriy Sirenko , Seil S. Sautbekov , Nataliya Yashina and Kostyantyn Sirenko
This paper is the continuation and development of the discussion started in our previous work with the same title. For the first time, eigen waves of the plane boundary separating vacuum and an artificial plasma-like medium are considered in reasonably substantiated way and in a sufficiently extensive and profound volume. The possibility of extending the results obtained for a plane boundary to the case of a weakly profiled periodically uneven boundary is shown. This paper demonstrates the potential and urge to use the analytical results in the studies of the resonant transformation of the field of a plane, density modulated electron beam flying over a periodically uneven boundary of a natural or artificial medium in the field of bulk outgoing waves.
2021-02-05
PIER Letters
Vol. 96, 65-72
A Compact Dual Band Dual Polarized Monopole Antenna with Enhanced Bandwidth for C, X, and Ku Band Applications
Reshmi Dhara
This article presents a compact, single feed dual-band dual-polarized (DBDP) microstrip antenna. The proposed design involves an inverted Y-shaped radiating patch and a rectangular open-loop positioned near its right corner that creates mutual coupling to attain wideband circular polarization (CP). To achieve enhanced axial ratio bandwidth (ARBW), a semi-rectangular ground plane with two asymmetric truncated L-shaped slots has been used. An L-shaped slotted quarter wave microstrip line feed is used here for broader ARBW and proper impedance matching. The measured dual impedance bandwidths (IBW) in the range 5.85-6.52 GHz (centre resonance frequency frc1 = 6.19 GHz, 10.66%) in lower frequency region and 7.25-13.64 GHz (frc2 = 10.445 GHz, 61.18% bandwidth) in higher frequency region. The two ARBW bands span over 7.22-10.99 GHz (fc1 = 9.105 GHz, 41.41%) and 11.67 GHz-12.25 GHz (fc2 = 11.96 GHz, 4.85%). The measured peak gains between 3.20 and 4.96 dBi over the entire IBW range makes the LP and CP bands suitable for ITS (5.9 GHz), U-NII-5 of 6 GHz band, some C-band, ITU-8 GHz, some X-band, and Ku-band applications.
2021-02-05
PIER
Vol. 170, 97-128
A Fine Scale Partially Coherent Patch Model Including Topographical Effects for GNSS-R DDM Simulations
Haokui Xu , Jiyue Zhu , Leung Tsang and Seung Bum Kim
In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical elevations and with small to large topographical slopes. The summation of scattered fields over patches is carried out using physical optics. The phase term of the scattered wave of each patch is kept so that correlation scattering effects among patches are accounted for. Results are illustrated for power ratio for areas near the specular point and areas far away from the specular point. Comparisons are made with the radiative transfer geometric optics model. DDM simulations are performed with good agreement with CYGNSS data.