Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-08
Extremely Close Integration of Dual Band Sub-6 GHz 4G Antenna with Unidirectional mmWave 5G Antenna
By
Progress In Electromagnetics Research Letters, Vol. 96, 73-80, 2021
Abstract
An extremely close integration of a dual band sub-6 GHz 4G antenna with a 28 GHz 5G antenna is proposed in this article. Firstly, a dual band 4G LTE (Long term Evolution) antenna is designed on an inexpensive substrate. The proposed antenna operates in the 2.5 GHz and 3.5 GHz LTE bands. The antenna has dimensions of 63 x 5.6 x 0.5 mm3, indicating an electrically small design. As the width of the antenna is less than 7 mm, it could be easily mounted on commercial mobile devices. The patterns for both the bands are almost omnidirectional as desired by the low frequency antennas. The proposed antennas do not carry any additional miniaturization or tuning circuitry hence simplifying fabrication process. Secondly, an angled dipole with Yagi topology is proposed, which works in the 28 GHz mmWave 5G band. The angled dipole has dimensions 28.3 x 5.6 x 0.5 mm3, which is also electrically compact and has a high front to back ratio. The microwave and millimetre wave antennas are placed orthogonally for minimal mutual coupling. The characteristics of both the antennas are not affected by the presence of the other element. Detailed results are shown in this article.
Citation
Shakeel Ahmad Malik, Khalid Muzaffar, Ajaz Hussain Mir, and Ayaz Hassan Moon, "Extremely Close Integration of Dual Band Sub-6 GHz 4G Antenna with Unidirectional mmWave 5G Antenna," Progress In Electromagnetics Research Letters, Vol. 96, 73-80, 2021.
doi:10.2528/PIERL20122106
References

1. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, September 2014.
doi:10.1109/MCOM.2014.6894454

2. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

3. Kurvinen, J., H. Kahkonen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, "Co-designed mmwave and LTE handset antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1545-1553, March 2019.
doi:10.1109/TAP.2018.2888823

4. Idrees Magray, M., G. S. Karthikeya, K. Muzaffar, and S. K. Koul, "Corner bent integrated design of 4G LTE and mmwave 5G antennas for mobile terminals," Progress In Electromagnetics Research M, Vol. 84, 167-175, 2019.
doi:10.2528/PIERM19062603

5. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, No. 2, 271-279, February 2017.
doi:10.1049/iet-map.2016.0738

6. Idrees Magray, M., G. S. Karthikeya, K. Muzaffar, and S. K. Koul, "Compact co-design of conformal 4G LTE and mmwave 5G antennas for mobile terminals," IETE Journal of Research, 2019.

7. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, December 2017.
doi:10.1109/TAP.2017.2671028

8. Li, X., X. Shi, W. Hu, P. Fei, and J. Yu, "Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 388-391, 2013.
doi:10.1109/LAWP.2013.2252414

9. Rajkumar, R. and U. K. Kommuri, "A compact ACS-fed mirrored l-shaped monopole antenna with SRR loaded for multiband operation," Progress In Electromagnetics Research C, Vol. 64, 159-167, 2016.
doi:10.2528/PIERC16031501

10. Jarufe, C., et al. "Optimized corrugated tapered slot antenna for mm-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1227-1235, March 2018.
doi:10.1109/TAP.2018.2797534

11. Muzaffar, K., M. I. Magray, G. S. Karthikeya, and S. K. Koul, "High gain broadband vivaldi antenna for 5G applications," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 496-497, Granada, Spain, 2019.
doi:10.1109/ICEAA.2019.8878970

12. Kota, K. and L. Shafai, "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electronics Letters, Vol. 47, No. 5, 303-304, March 3, 2011.
doi:10.1049/el.2010.7579

13. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

14. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.

15. Rocca, P., M. Donelli, G. Oliveri, F. Viani, and A. Massa, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar," IET Radar, Sonar and Navigation, Vol. 7, No. 7, 747-754, 2013.
doi:10.1049/iet-rsn.2012.0300