1. Al-Hakkak, M. J., "Experimental investigation of the input-impedance characteristics of an antenna in a rectangular waveguide," Electronics Letters, Vol. 5, 513-514, 1969.
doi:10.1049/el:19690385 Google Scholar
2. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microwave Theory Tech., Vol. 19, 295-308, 1971.
doi:10.1109/TMTT.1971.1127503 Google Scholar
3. Eisenhart, R. L. and P. J. Khan, "Theoretical and experimental analysis of a waveguide mounting structure," IEEE Trans. Microwave Theory Tech., Vol. 19, 706-719, 1971.
doi:10.1109/TMTT.1971.1127612 Google Scholar
4. Petlenko, V. A. and M. V. Nesterenko, "Current distribution and resonance of rod conductors in a rectangular waveguide," Radiophysics Quantum Electronics, Vol. 27, 236-241, 1984.
doi:10.1007/BF01035044 Google Scholar
5. Lopuch, S. L. and T. K. Ishii, "Field distribution of two conducting posts in a waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 29-33, 1984.
doi:10.1109/TMTT.1984.1132607 Google Scholar
6. Williamson, A. G., "Variable-length cylindrical post in a rectangular waveguide," IEE Proceedings, Vol. 133, Pt. H, 1-9, 1986.
doi:10.1049/ip-d.1986.0001 Google Scholar
7. Hashemi-Yeganeh, S. and C. R. Birtcher, "Numerical and experimental studies of current distributions on thin metallic posts inside rectangular waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, 1063-1068, 1994.
doi:10.1109/22.293577 Google Scholar
8. Roelvink, J. and A. G. Williamson, "Reactance of hollow, solid, and hemispherical-cap cylindricalposts in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, 3156-3160, 2005.
doi:10.1109/TMTT.2005.855356 Google Scholar
9. Kirilenko, A., D. Kulik, L. Mospan, and L. Rud, "Two notched band two post waveguide," Proc. of 12th Int. Math. Methods Electromagn. Theory Conf., 164-166, 2008. Google Scholar
10. Tomassoni, C. and R. Sorrentino, "A new class pseudoelliptic waveguide filters using dual-post resonators," IEEE Trans. Microwave Theory Tech., Vol. 61, 2332-2339, 2013.
doi:10.1109/TMTT.2013.2258171 Google Scholar
11. Cassedy, E. S. and J. Fainberg, "Back scattering cross sections of cylindrical wires of finite conductivity," IEEE Trans. Antennas Propagat., Vol. 8, 1-7, 1960.
doi:10.1109/TAP.1960.1144803 Google Scholar
12. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
doi:10.1109/TAP.1966.1138733 Google Scholar
13. Lamensdorf, D., "An experimental investigation of dielectric-coated antennas," IEEE Trans. Antennas Propagat., Vol. 15, 767-771, 1967.
doi:10.1109/TAP.1967.1139049 Google Scholar
14. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972. Google Scholar
15. Bretones, A. R., R. G. Martın, and I. S. Garcıa, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas Propagat., Vol. 43, 591-596, 1995.
doi:10.1109/8.387174 Google Scholar
16. Nesterenko, M. V., "The electromagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
doi:10.1615/TelecomRadEng.v61.i10.40 Google Scholar
17. Hanson, G. W., "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propagat. Mag., Vol. 50, No. 3, 66-77, 2008.
doi:10.1109/MAP.2008.4563565 Google Scholar
18. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, 2011.
doi:10.1007/978-1-4419-7850-9
19. Lewin, L., Theory of Waveguides. Techniques for the Solution of Waveguide Problems, Newnes-Butterworths, 1975.
20. Gorobets, N. N., M. V. Nesterenko, V. A. Petlenko, and N. A. Khizhnyak, "Thin impedance vibrator in a rectangular waveguide," Radio Eng., Vol. 39, 65-68, 1984. Google Scholar
21. Gorobets, N. N., M. V. Nesterenko, and V. A. Petlenko, "Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide," Telecommunications Radio Eng., Vol. 45, No. 4, 110-112, 1990. Google Scholar
22. Penkin, D. Yu, V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic characteristics of a radial impedance vibrator on a perfect conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
doi:10.2528/PIERB14120102 Google Scholar
23. Penkin, Yu. M., V. A. Katrich, M. V. Nesterenko, S. L. Berdnik, and V. M. Dakhov, Electromagnetic Fields Excited in Volumes with Spherical Boundaries, Springer Nature Swizerland AG, 2019.
doi:10.1007/978-3-319-97819-2
24. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propag., Vol. 13, 369-373, 1965.
doi:10.1109/TAP.1965.1138429 Google Scholar
25. Shen, L.-C., "An experimental study of the antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propagat., Vol. 15, 606-611, 1967.
doi:10.1109/TAP.1967.1139025 Google Scholar
26. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas Propagat., Vol. 16, 176-179, 1968.
doi:10.1109/TAP.1968.1139146 Google Scholar
27. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas Propagat., Vol. 17, 145-151, 1969.
doi:10.1109/TAP.1969.1139408 Google Scholar
28. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
doi:10.2528/PIERB15043003 Google Scholar
29. Garb, H. L., P. Sh. Friedberg, and I. M. Yakover, "Diffraction of an H10-wave on a thin resistive film with a stepwise change of surface impedance in a rectangular waveguide," Radioengineering Electronics, Vol. 30, 41-48, 1985 (in Russian). Google Scholar
30. Miek, D., P. Boe, F. Kamrath, and M. Hoft, "Techniques for the generation of multiple additional transmission zeros in H-plane waveguide filters," International Journal of Microwave and Wireless Technologies, 723-732, 2020.
doi:10.1017/S1759078720000811 Google Scholar
31. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, 1986 (in Russian).