Vol. 109
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-14
Wide Bandwidth Low Profile PIFA Antenna for Vehicular Sub-6 GHz 5G and V2X Wireless Systems
By
Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021
Abstract
This paper introduces a low profile wideband Planar Inverted-F antenna (PIFA) for vehicular applications in the 5G systems (below 6 GHz) and Vehicle-to-Everything (V2X) communications. The antenna covers a wide range of bandwidth which operates from 617 MHz to 6 GHz while having an acceptable filtering on the GNSS bands. This design's physical dimensions and electrical performance make it suitable for low profile wireless applications in the automotive field. Measurement data on Ground plane (GND) and on vehicle are presented from a properly cut metal sheet prototype along with simulated results of the model design. Simulation and measurement results are discussed in terms of VSWR, surface current distribution, radiation patterns, antenna efficiency, and linear average gain (LAG).
Citation
Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi, "Wide Bandwidth Low Profile PIFA Antenna for Vehicular Sub-6 GHz 5G and V2X Wireless Systems," Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021.
doi:10.2528/PIERC21010609
References

1. Abboud, K., H. A. Omar, and W. Zhuang, "Interworking of DSRC and cellular network technologies for V2X communications: A survey," IEEE Transactions on Vehicular Technology, Vol. 65, No. 12, 9457-9470, Dec. 2016.
doi:10.1109/TVT.2016.2591558        Google Scholar

2. Wang, C., J. Bian, J. Sun, W. Zhang, and M. Zhang, "A survey of 5G channel measurements and models," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3142-3168, Fourth quarter 2018.
doi:10.1109/COMST.2018.2862141        Google Scholar

3. Ghafari, E., A. Fuchs, D. Eblenkamp, and D. N. Aloi, "A vehicular rooftop, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 237-240, Palm Beach, 2014.        Google Scholar

4., https://www.its.dot.gov/research archives/connected vehicle/pdf/DSRCReportCongress FINAL 23NOV2015.pdf.

5. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, Dec. 2012.
doi:10.1109/TAP.2012.2213052        Google Scholar

6. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
doi:10.1109/ACCESS.2019.2897219        Google Scholar

7. Chattha, H., Y. Huang, X. Zhu, and Y. Lu, "An empirical equation for predicting the resonant frequency of planar inverted-F antennas," Antennas and Wireless Propagation Letters, Vol. 8, 856-860, IEEE, 10.1109/LAWP.2009.2027822, 2009.        Google Scholar

8. Yang, L., N. Liu, Z. Zhang, G. Fu, Q. Liu, and S.-L. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014.        Google Scholar

9. Valagiannopoulos, C., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803        Google Scholar

10. Narbudowicz, A., X. L. Bao, and M. J. Ammann, "Dual-band omnidirectional circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 77-83, Jan. 2013.
doi:10.1109/TAP.2012.2214992        Google Scholar

11. Fikioris, G. and C. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701        Google Scholar

12. Chen, L., X. Ren, Y.-Z. Yin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.
doi:10.2528/PIERL13052020        Google Scholar

13. Valagiannopoulos, C., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502        Google Scholar

14. Sayidmarie, K. and L. Yahya, "Modeling of dual-band crescent-shape monopole antenna for WLAN applications," International Journal of Electromagnetics and Applications, Vol. 4, 31-39, 2014.        Google Scholar

15. Franchina, A. M., P. Nepa, R. Parolari, I. Moro, A. Polo Filisan, and D. Zamberlan, "A 3D LTE antenna for vehicular applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 637-638, San Diego, CA, Jul. 2017.        Google Scholar

16. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," 11th European Conference on Antennas and Propagation (EUCAP), 602-605, Paris, Mar. 2017.        Google Scholar

17. Ghafari, E. and D. N. Aloi, "Top-loaded UWB monopole antenna for automotive applications," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, Jul. 2012.        Google Scholar

18. Michel, A., P. Nepa, M. Gallo, I. Moro, A. Polo Filisan, and D. Zamberlan, "Printed wideband antenna for LTE-band automotive applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1245-1248, Nov. 2016.        Google Scholar

19. Navarro-Mendez, D. V., et al., "Compact wideband vivaldi monopole for LTE mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1068-1071, 2015.
doi:10.1109/LAWP.2015.2389956        Google Scholar

20. Goncharova, I. and S. Lindenmeier, "A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling," 2013 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Lisbon, Apr. 2015.        Google Scholar

21. Hua, Y., L. Huang, and Y. Lu, "A compact 3-port multiband antenna for V2X communication," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 639-640, San Diego, CA, 2017.        Google Scholar

22. Suh, S.-Y., W. L. Stutzman, and W. A. Davis, "A new ultrawideband printed monopole antenna: the Planar Inverted Cone Antenna (PICA)," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1361-1364, May 2004.
doi:10.1109/TAP.2004.827529        Google Scholar

23. Liang, X., S. Zhong, W. Wang, and F. Yao, "Printed annular monopole antenna for ultra-wideband applications," Electronics Letters, Vol. 42, No. 2, 71-72, Jan. 19, 2006.
doi:10.1049/el:20063850        Google Scholar