1. Abboud, K., H. A. Omar, and W. Zhuang, "Interworking of DSRC and cellular network technologies for V2X communications: A survey," IEEE Transactions on Vehicular Technology, Vol. 65, No. 12, 9457-9470, Dec. 2016.
doi:10.1109/TVT.2016.2591558 Google Scholar
2. Wang, C., J. Bian, J. Sun, W. Zhang, and M. Zhang, "A survey of 5G channel measurements and models," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3142-3168, Fourth quarter 2018.
doi:10.1109/COMST.2018.2862141 Google Scholar
3. Ghafari, E., A. Fuchs, D. Eblenkamp, and D. N. Aloi, "A vehicular rooftop, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 237-240, Palm Beach, 2014. Google Scholar
4., https://www.its.dot.gov/research archives/connected vehicle/pdf/DSRCReportCongress FINAL 23NOV2015.pdf.
5. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, Dec. 2012.
doi:10.1109/TAP.2012.2213052 Google Scholar
6. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
doi:10.1109/ACCESS.2019.2897219 Google Scholar
7. Chattha, H., Y. Huang, X. Zhu, and Y. Lu, "An empirical equation for predicting the resonant frequency of planar inverted-F antennas," Antennas and Wireless Propagation Letters, Vol. 8, 856-860, IEEE, 10.1109/LAWP.2009.2027822, 2009. Google Scholar
8. Yang, L., N. Liu, Z. Zhang, G. Fu, Q. Liu, and S.-L. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014. Google Scholar
9. Valagiannopoulos, C., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803 Google Scholar
10. Narbudowicz, A., X. L. Bao, and M. J. Ammann, "Dual-band omnidirectional circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 77-83, Jan. 2013.
doi:10.1109/TAP.2012.2214992 Google Scholar
11. Fikioris, G. and C. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701 Google Scholar
12. Chen, L., X. Ren, Y.-Z. Yin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.
doi:10.2528/PIERL13052020 Google Scholar
13. Valagiannopoulos, C., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502 Google Scholar
14. Sayidmarie, K. and L. Yahya, "Modeling of dual-band crescent-shape monopole antenna for WLAN applications," International Journal of Electromagnetics and Applications, Vol. 4, 31-39, 2014. Google Scholar
15. Franchina, A. M., P. Nepa, R. Parolari, I. Moro, A. Polo Filisan, and D. Zamberlan, "A 3D LTE antenna for vehicular applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 637-638, San Diego, CA, Jul. 2017. Google Scholar
16. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," 11th European Conference on Antennas and Propagation (EUCAP), 602-605, Paris, Mar. 2017. Google Scholar
17. Ghafari, E. and D. N. Aloi, "Top-loaded UWB monopole antenna for automotive applications," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, Jul. 2012. Google Scholar
18. Michel, A., P. Nepa, M. Gallo, I. Moro, A. Polo Filisan, and D. Zamberlan, "Printed wideband antenna for LTE-band automotive applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1245-1248, Nov. 2016. Google Scholar
19. Navarro-Mendez, D. V., et al., "Compact wideband vivaldi monopole for LTE mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1068-1071, 2015.
doi:10.1109/LAWP.2015.2389956 Google Scholar
20. Goncharova, I. and S. Lindenmeier, "A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling," 2013 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Lisbon, Apr. 2015. Google Scholar
21. Hua, Y., L. Huang, and Y. Lu, "A compact 3-port multiband antenna for V2X communication," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 639-640, San Diego, CA, 2017. Google Scholar
22. Suh, S.-Y., W. L. Stutzman, and W. A. Davis, "A new ultrawideband printed monopole antenna: the Planar Inverted Cone Antenna (PICA)," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1361-1364, May 2004.
doi:10.1109/TAP.2004.827529 Google Scholar
23. Liang, X., S. Zhong, W. Wang, and F. Yao, "Printed annular monopole antenna for ultra-wideband applications," Electronics Letters, Vol. 42, No. 2, 71-72, Jan. 19, 2006.
doi:10.1049/el:20063850 Google Scholar