1. Chandravanshi, S. and M. J. Akhtar, "Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 59, No. 3, 681-686, 2017.
doi:10.1002/mop.30365 Google Scholar
2. Palazzi, V., M. Del Prete, and M. Fantuzzi, "Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands," IEEE Microwave Magazine, Vol. 18, No. 1, 91-99, 2017.
doi:10.1109/MMM.2016.2616189 Google Scholar
3. Sun, H., Y. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 929-932, 2012. Google Scholar
4. Harouni, Z., L. Osman, and A. Gharsallah, "Efficient 2.45GHz rectenna design with high harmonic rejection for wireless power transmission," International Journal of Computer Science Issues, Vol. 7, No. 5, 424-427, Sep. 2010. Google Scholar
5. Marian, V., B. Allard, C. Vollaire, and J. Verdier, "Strategy for microwave energy harvesting from ambient field or a feeding source," IEEE Transactions on Power Electronics, Vol. 27, No. 11, 4481-4491, 2012.
doi:10.1109/TPEL.2012.2185249 Google Scholar
6. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460 Google Scholar
7. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319 Google Scholar
8. Sun, H. and W. Geyi, "A new rectenna with all-polarization-receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345 Google Scholar
9. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 36-39, 2016. Google Scholar
10. He, Y., K. Ma, N. Yan, and H. Zhang, "Dual-band monopole antenna using substrate-integrated suspended line technology for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2776-2779, 2017.
doi:10.1109/LAWP.2017.2745503 Google Scholar
11. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789 Google Scholar
12. Berges, R., L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, "Conformable dual-band wireless energy harvester dedicated to the urban environment," Microwave and Optical Technology Letters, Vol. 62, No. 11, 3391-3400, 2020.
doi:10.1002/mop.32461 Google Scholar
13. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient rf energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397 Google Scholar
14. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1768-1778, 2015.
doi:10.1109/TMTT.2015.2416233 Google Scholar
15. Song, C., Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505 Google Scholar
16. Okba, A., A. Takacs, H. Aubert, S. Charlot, and P.-F. Calmon, "Multiband rectenna for microwave applications," Comptes Rendus Physique, Vol. 18, No. 2, 107-117, 2017.
doi:10.1016/j.crhy.2016.12.002 Google Scholar
17. Lu, P., X.-S. Yang, J.-L. Li, and B.-Z. Wang, "A dual-frequency quasi-PIFA rectenna with a robust voltage doubler for 2.45- and 5.8-GHz wireless power transmission," Microwave and Optical Technology Letters, Vol. 57, No. 2, 319-322, 2015.
doi:10.1002/mop.28841 Google Scholar
18. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high-efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719 Google Scholar
19. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, 2014.
doi:10.1109/MMM.2014.2309499 Google Scholar
20. Liu, D.-S., F.-B. Li, X. Zou, Y. Liu, X.-M. Hui, and X.-F. Tao, "New analysis and design of a RF rectifier for RFID and implantable devices," Sensors, Vol. 11, 6494-6508, 2011.
doi:10.3390/s110706494 Google Scholar
21. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
doi:10.1002/mop.31945 Google Scholar
22. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "Broadband rectenna for radio frequency energy harvesting application," IETE Journal of Research, Vol. 64, No. 3, 347-353, 2018.
doi:10.1080/03772063.2017.1356755 Google Scholar
23. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
doi:10.1109/TAP.2018.2826568 Google Scholar
24. Tsai, C., I. Liao, C. Pakasiri, H. Pan, and Y. Wang, "A wideband 20mW UHF rectifier in CMOS," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 388-390, 2015.
doi:10.1109/LMWC.2015.2421357 Google Scholar
25. Helal, E., M. El-Nozahi, S. Ibrahim, and H. F. Ragai, "A 1.65 to 2.5 GHz wide-band RF energy harvester," 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2018. Google Scholar
26. Xie, K., Y.-M. Liu, H.-L. Zhang, and L.-Z. Fu, "Harvest the ambient AM broadcast radio energy for wireless sensors," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14–15, 2054-2065, 2011.
doi:10.1163/156939311798072144 Google Scholar
27. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis and optimization of dual side printed multiband antenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901 Google Scholar
28. Pandey, R., A. K. Shankhwar, and A. Singh, "Far field analysis of defected ground structured wideband antenna for RF energy harvesting applications," Advances in VLSI, Communication, and Signal Processing, 201-212, David Harvey, Haranath Kar, Shekhar Verma, and Vijaya Bhadauria, editors, Springer Singapore, Singapore, 2021. Google Scholar
29. Saranya, N. and T. Kesavamurthy, "Design and performance analysis of broadband rectenna for an efficient RF energy harvesting application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21628, 2019.
doi:10.1002/mmce.21628 Google Scholar