Vol. 109
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-09
An Improved Conversion Efficiency of 1.975 to 4.744 GHz Rectenna for Wireless Sensor Applications
By
Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021
Abstract
This article discusses the design analysis of a wideband rectenna (Antenna + Rectifier). It empowers low power devices, battery-less power sensors, and many Internet of Things (IoT) devices. The main focus of this work is divided into two parts. First, to develop the power to operate the wideband frequency of operation without system complexity. To obtain rectifier bandwidth sufficiently, L-section impedance matching with dual Schottky diode HSMS270B is proposed. Second, to improve the rectenna efficiency and output DC power. Wideband rectenna harvests the maximum RF power of 30.590 dBm, 1145.51 mW, 10.703 Volts at 3.2 GHz. The harvested power is easily available to power up the low powered sensor such as gas sensor (500-800 mW), pressure sensor (10-15 mW), and temperature sensor (0.5-5 mW). The peak conversion efficiency of the rectenna is 88.58% at 0 dBm, 34.70% at 10 dBm, and 53.52% at 20 dBm under the load resistance of 100 KΩ. The proposed work shows a 20-25% improvement in conversion efficiency with this approach. For efficient RF energy harvesting applications, the proposed rectenna is capable of covering a wideband application from 1.975 to 4.744 GHz with a single radiation patch. This shows that the novel approach of the considered work and the proposed rectenna has the specialty to capture more energy from a wide area at once.
Citation
Rashmi Pandey, Ashok Kumar Shankhwar, and Ashutosh Singh, "An Improved Conversion Efficiency of 1.975 to 4.744 GHz Rectenna for Wireless Sensor Applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102
References

1. Chandravanshi, S. and M. J. Akhtar, "Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 59, No. 3, 681-686, 2017.
doi:10.1002/mop.30365

2. Palazzi, V., M. Del Prete, and M. Fantuzzi, "Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands," IEEE Microwave Magazine, Vol. 18, No. 1, 91-99, 2017.
doi:10.1109/MMM.2016.2616189

3. Sun, H., Y. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 929-932, 2012.

4. Harouni, Z., L. Osman, and A. Gharsallah, "Efficient 2.45GHz rectenna design with high harmonic rejection for wireless power transmission," International Journal of Computer Science Issues, Vol. 7, No. 5, 424-427, Sep. 2010.

5. Marian, V., B. Allard, C. Vollaire, and J. Verdier, "Strategy for microwave energy harvesting from ambient field or a feeding source," IEEE Transactions on Power Electronics, Vol. 27, No. 11, 4481-4491, 2012.
doi:10.1109/TPEL.2012.2185249

6. Zeng, M., A. S. Andrenko, X. Liu, Z. Li, and H. Tan, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460

7. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319

8. Sun, H. and W. Geyi, "A new rectenna with all-polarization-receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345

9. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 36-39, 2016.

10. He, Y., K. Ma, N. Yan, and H. Zhang, "Dual-band monopole antenna using substrate-integrated suspended line technology for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2776-2779, 2017.
doi:10.1109/LAWP.2017.2745503

11. Nie, M., X. Yang, G. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789

12. Berges, R., L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, "Conformable dual-band wireless energy harvester dedicated to the urban environment," Microwave and Optical Technology Letters, Vol. 62, No. 11, 3391-3400, 2020.
doi:10.1002/mop.32461

13. Shen, S., C. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient rf energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397

14. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1768-1778, 2015.
doi:10.1109/TMTT.2015.2416233

15. Song, C., Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505

16. Okba, A., A. Takacs, H. Aubert, S. Charlot, and P.-F. Calmon, "Multiband rectenna for microwave applications," Comptes Rendus Physique, Vol. 18, No. 2, 107-117, 2017.
doi:10.1016/j.crhy.2016.12.002

17. Lu, P., X.-S. Yang, J.-L. Li, and B.-Z. Wang, "A dual-frequency quasi-PIFA rectenna with a robust voltage doubler for 2.45- and 5.8-GHz wireless power transmission," Microwave and Optical Technology Letters, Vol. 57, No. 2, 319-322, 2015.
doi:10.1002/mop.28841

18. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high-efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719

19. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, 2014.
doi:10.1109/MMM.2014.2309499

20. Liu, D.-S., F.-B. Li, X. Zou, Y. Liu, X.-M. Hui, and X.-F. Tao, "New analysis and design of a RF rectifier for RFID and implantable devices," Sensors, Vol. 11, 6494-6508, 2011.
doi:10.3390/s110706494

21. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
doi:10.1002/mop.31945

22. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "Broadband rectenna for radio frequency energy harvesting application," IETE Journal of Research, Vol. 64, No. 3, 347-353, 2018.
doi:10.1080/03772063.2017.1356755

23. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
doi:10.1109/TAP.2018.2826568

24. Tsai, C., I. Liao, C. Pakasiri, H. Pan, and Y. Wang, "A wideband 20mW UHF rectifier in CMOS," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 388-390, 2015.
doi:10.1109/LMWC.2015.2421357

25. Helal, E., M. El-Nozahi, S. Ibrahim, and H. F. Ragai, "A 1.65 to 2.5 GHz wide-band RF energy harvester," 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2018.

26. Xie, K., Y.-M. Liu, H.-L. Zhang, and L.-Z. Fu, "Harvest the ambient AM broadcast radio energy for wireless sensors," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14–15, 2054-2065, 2011.
doi:10.1163/156939311798072144

27. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis and optimization of dual side printed multiband antenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901

28. Pandey, R., A. K. Shankhwar, and A. Singh, "Far field analysis of defected ground structured wideband antenna for RF energy harvesting applications," Advances in VLSI, Communication, and Signal Processing, 201-212, David Harvey, Haranath Kar, Shekhar Verma, and Vijaya Bhadauria, editors, Springer Singapore, Singapore, 2021.

29. Saranya, N. and T. Kesavamurthy, "Design and performance analysis of broadband rectenna for an efficient RF energy harvesting application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21628, 2019.
doi:10.1002/mmce.21628