Search Results(13735)

2021-02-23
PIER M
Vol. 101, 101-115
Full Wave Analysis of Multilayered Cylindrical Resonator Containing Uniaxial Anisotropic Media
Krzysztof Derzakowski
The method of evaluating the resonant frequencies of a multilayered cylindrical resonator containing uniaxial anisotropic materials is presented. The detailed solution of Maxwell's equations for such a structure by means of the radial mode matching method is given. The results of calculations using developed and launched computer program are given, and they are compared with those obtained by other methods and with measurements. These results are in close agreement, which proves the correctness of the method. The developed solution and the software program can be used to measure the permittivity tensor of materials.
2021-02-23
PIER M
Vol. 101, 89-100
Research on the Model and Characteristics of Underground Magnetic Induction Communication Channel
Bao Heng Liu , Yongbin Wang and Tianhui Fu
The traditional electromagnetic wave wireless communication in the underground environment has the problem of unstable channel path loss, large antenna size, high path loss, etc. To address these issues, the channel models of magnetic induction communication and magnetic induction waveguide communication based on quasi-static field coupling are proposed, and the characteristics of magnetic field strength, path loss, bandwidth, and channel capacity are analyzed in detail. The results show that the magnetic induction communication system channel is stable, compared with the ordinary induction communication, and the path loss of magnetic induction waveguide communication is reduced a lot, even in the case of high noise and transmission distance increased by more than 20 times. But the bandwidths of the two ways are small and similar. The path loss and bandwidth decide the system capacity, and system capacity is also affected by the number of turns, working frequency, coil resistance, and size.
2021-02-22
PIER C
Vol. 110, 119-133
Metasurface Superstrate Inspired Printed Monopole Antenna for RF Energy Harvesting Application
Bikash Ranjan Behera , Priya R. Meher and Sanjeev Kumar Mishra
In this paper, a metasurface superstrate-inspired broadband circularly polarized (CP) printed monopole antenna is investigated. To achieve broadband circular polarization and directional radiation pattern, a circle-shaped monopole radiator with asymmetrical staircased partial ground loaded with metasurface is introduced. It is fed by a 50-Ω microstrip feedline and is fabricated on an FR-4 substrate, having overall dimension of 1.25λ0 × 1.66λ0 × 0.02λ0 at f = 5 GHz. The metasurface antenna exhibits a measured impedance bandwidth of 5 GHz (1.85-6.85 GHz, 114.9%), axial bandwidth of 910 MHz (4.09-5 GHz, 20.02%) with average CP antenna gain of 6.82 dBic, directional radiation pattern and consistent antenna efficiency of > 85.65% in the desired frequency bands. Time domain characteristics i.e. group delay is obtained within 2 ns in the operating frequency bands. Due to its design process and attainment of broadband CP, higher antenna gain and directional radiation pattern in the broadside direction, it is extended for RF energy harvesting. The proposed metasurface antenna is integrated with a rectifier circuit, where RF-to-DC conversion efficiency (η0) and DC output voltage (Vout) are analyzed by using ADS circuit solver.
2021-02-22
PIER C
Vol. 110, 103-117
Triple Band Dual Sense Circularly Polarized Ceramic Based Antenna: Exploring Conceptual Design Methodology
Anand Sharma , Gourab Das and Ravi Kumar Gangwar
In this communication, conceptual design guidelines for a tri-band dual sense circularly polarized ceramic-based antenna is explored. An asymmetrical S-shaped aperture is used to stimulate the ring-shaped ceramic. Some exclusive features are obtained in the designed antenna: (i) creation of five different hybrid modes (HEM11δ, HEM11δ+2, HEM12δ-like, HEM12δ, and HEM13δ) is helpful for getting dual wideband impedance bandwidth; (ii) proposed aperture assists in achieving CP waves in three different frequency ranges with two different senses. Its experimental results confirm the simulated outcomes. The proposed antenna is operated within the dual-frequency ranges i.e. 2.2-4.19 GHz and 4.74-6.11 GHz, respectively. The measured 3-dB axial ratio is achieved in three different frequency ranges within the operating band i.e. 2.71-2.98 GHz, 3.6-3.79 GHz, and 5.5-5.81 GHz, respectively. The proposed antenna design is left-handed circularly polarized (LHCP) in the first and third frequency ranges, while it is right-handed in the second one. These features, along with broadsided far-field patterns, recommend the proposed antenna design for potential application in WLAN (2.4/5.5 GHz) and WiMAX (3.3/5.0 GHz) wireless networks.
2021-02-21
PIER C
Vol. 110, 91-102
Design of Dual-Band Conformal AMC Integrated Antenna for SAR Reduction in WBAN
Bidisha Hazarika , Banani Basu and Arnab Nandi
A wearable, miniaturized, dual-band, Artificial Magnetic Conductor (AMC) integrated antenna operating on ISM band (2.38-2.47 GHz) and WLAN band (5.11-5.31 GHz) is proposed for Wireless Body Area Network (WBAN). A dumbbell shaped unit-cell is designed to achieve zero reflection phase and modified material characteristics. When 2×2 array of dumbbell shaped AMC is put underneath the monopole, the antenna gain increases up to 9.5 dB and 8.1 dB at 2.43 GHz and 5.2 GHz respectively. Different bending conditions have been considered to confirm the robustness of the AMC antenna. Debye model is used to approximate the dielectric properties within phantom tissue model. Antenna shields most of the backward radiation and reduces the specific absorption rate (SAR) of the integrated antenna by more than 95% in 1-g of phantom hand tissues at both the frequencies. The acquired results exhibit that the AMC antenna is more secure for on body applications.
2021-02-21
PIER M
Vol. 101, 79-88
G-Shaped Defected Microstrip Structure Based Method of Reducing Crosstalk of Coupled Microstrip Lines
Rui Li , Yafei Wang , Wei Yang and Xuehua Li
The suppression of crosstalk by combining the defected microstrip structure (DMS) with step-shaped transmission lines is proposed to address the problem of crosstalk between microstrip lines of the printed circuit board. This method suppresses the crosstalk between the microstrip lines by constructing two step-shaped coupled microstrip lines and etching the designed G-shaped DMS on one of the microstrip lines. Simulation and actual measurement results show that the combination of G-shaped DMS and step-shaped transmission line can effectively suppress crosstalk and reduce the far-end crosstalk by approximately 20 dB in the frequency range of 4-5 GHz. The actual measurement results in the vector network analyzer coincide with the high-frequency structure simulator simulation results.
2021-02-20
PIER C
Vol. 110, 81-89
Gain Flattening of Wideband FPC Antenna Using Elliptical and Rectangular Slotted AMC Layers
Nayana Chaskar , Shishir Jagtap , Rajashree Thakare and Rajiv Kumar Gupta
In this paper, the gain flattening of a wideband Fabry-Perot cavity (FPC) antenna, using truncated partially reflecting surface (PRS) and slotted elliptical and rectangular shape artificial magnetic conductor (AMC) layers is proposed. FPC is fed using a metal plated microstrip antenna (MSA) which comprises three layers-elliptical slotted rectangular AMC-I layer, truncated PRS layer, and rectangular slotted elliptical AMC-II layer. AMC-II layer is designed complementary to AMC-I layer to obtain gain variation < 1dB over wide frequency band. Elliptical shaped AMC-II and truncated PRS reduce the reflected fields towards ground and thus improve front to back lobe ratio (F/B) and side lobe level (SLL). These layers resonate at higher frequency and thus reduce gain variation and couple electromagnetically with MSA and AMC-I layer to provide wide bandwidth (BW). The proposed antenna provides S11 < -10 dB, 17.2 dBi peak gain with gain variation < 1.2 dB over 5.7-6.4 GHz frequency band, which covers 5.725-5.875 GHz ISM and 5.9-6.4 GHz satellite uplink C band. Broadside radiation patterns have SLL < -19 dB, cross polarization (CPL) < -17 dB, and F/B > 20 dB with wide 3 dB gain BW of 15.2%. The overall antenna dimensions are 2.3λ0x2.75λ0x0.5λ0, where λ0 is the free space wavelength corresponding to 5.8 GHz, central frequency of ISM frequency band. The measured results of the prototype fabricated structure agree with simulation ones.
2021-02-19
PIER C
Vol. 110, 67-80
Dual Coaxial Probes in Transmission Inserted by Dielectric with Two Different Thicknesses to Extract the Material Complex Relative Permittivity: Discontinuity Impacts
Franck Moukanda Mbango , Fabien Ndagijimana and Aubin Lauril Lomanga Okana
After a thorough investigation, this paper introduces a novel and simple radiofrequency material characterization technique. For this study's purposes, two probes were developed and separated by the sample under test (SUT) with an inhomogeneous test cell. Furthermore, the discontinuity impacts at the probe, SUT interfaces, were also studied. The investigation uses the transmission process through the principle of two different SUT thicknesses to measure its relative permittivity and loss tangent. The technique is based on using the lumped elements of an equivalent circuit of the entire test cell and covers 1 MHz-2 GHz. With the SUT, placed between two metal probes and another metallization, placed under its thickness on an opposite side to improve the loss tangent acquisition level, the cascading chain matrix (CCM) is used to get the final parameters. The thickness changing makes it possible to overcome the contact interface effects probe-sample. A mathematical model has also been presented through the fitting procedure. The new technique has been validated with three materials: Rogers RO4003C, FR-4 HTG-175, and Alumina 99.6%. The SUT complex relative permittivity extraction makes the new approach suitable for the telecommunication industry and many others. The method is also ideal for materials with thickness sizing up to 3 mm around.
2021-02-18
PIER Letters
Vol. 96, 129-136
CRLH LWA Using Mushroom-Like Structures for Improved Radiation Performances
Huan Zhang
A composite right/left-handed (CRLH) leaky wave antenna (LWA) using double mushroom-like structures is proposed. With a proper arrangement of the left-handed structures, desirable cross-polarization performance in two orthogonal planes can be obtained based on the differential excitation principle. The CRLH performance of the cascaded LWA is demonstrated, and its improved radiation performance is clarified. Measured results indicate that the proposed antenna operates in 9.7-16.4 GHz with a beam scanning range from -71° to +31°. The cross-polarization levels are less than -30 dB and -20 dB in the beam scanning plane and non-beam-scanning plane, respectively.
2021-02-18
PIER Letters
Vol. 96, 121-128
Ultraviolet Vortex Generation through All-Dielectric Nano-Antennas for Free Space Optical Communication
Arslan Asim
Metamaterials have revolutionized the research in conventional electromagnetics. They display unique properties which can be used for the manipulation of electromagnetic waves in unexpected ways. In this research, a diamond nano-antenna is designed and optimized using the CST Microwave Studio, which uses Finite Difference Time Domain (FDTD) method. The designed unit cell shows high polarization conversion rates (PCR) for ultraviolet (UV) frequencies (especially the UV-B band) whilst covering Panchatram-Berry (PB) phase. The unit cell is then used to design metasurfaces that generate light beams carrying Orbital Angular Momentum (OAM) of different orders. Through the design of two dimensional metamaterial surfaces, the behavior of electromagnetic beams can be changed on sub-wavelength scale. This has led to a number of applications related to nanotechnology. A vortex beam carries Orbital Angular Momentum (OAM) which has played a vital role in increasing the bandwidth and data rate of optical communication systems. Therefore, OAM beams having different topological charges have been generated at 294 nm to propose an improvement in Free Space Optical (FSO) communication. Optical links also function as a suitable substitute for applications where Radio Frequency (RF) communications may not be effective. The proposed theoretical model is expected to open new horizons in optical communication by incorporating the use of nanoscale devices with high efficiencies in the ultraviolet regime.
2021-02-18
PIER M
Vol. 101, 69-78
Millimeter-Wave Frequency-Diverse Imaging with Phased Array Intended for Communications
Mikko K. Leino , Jan Bergman , Juha Ala-Laurinaho and Ville Viikari
This paper presents a recent progress in a millimeter-wave imaging done with a potential 5G base-station phased-array antenna exhibiting frequency-diverse, non-focused beams. The presented imaging system operates in 24-32 GHz band and is the first realization where phased arrays primarily developed for 5G communications are utilized in a frequency-diverse imaging application. The image reconstruction method solves the linear inverse problem with an iterative algorithm, and several images have been reconstructed based on the measurement data. Currently, a metallic sphere can be successfully located in the target space. However, future work is still required, and the paper further discusses the possibilities and restrictions of the current imaging setup.
2021-02-18
PIER M
Vol. 101, 59-68
Broadband and High-Aperture Efficiency Fabry-Perot Antenna with Low RCS Based on Nonuniform Metamaterial Superstrate
Hui-Fen Huang and Qi-Sheng Fan
Due to the nonuniform Electromagnetic (EM) field distribution over the superstrate, a Fabry-Perot Resonant Antenna is normally with high directivity but relatively low aperture efficiency when its aperture size is electrically large. In this paper, a Fabry-Perot resonator cavity antenna (FPCA) with a nonuniform metamaterial superstrate is proposed. The nonuniform metamaterial superstrate is a nonuniform double-sided printed dielectric, in which the upper surface is used for wideband RCS reduction, and the bottom surface is the nonuniform partially reflective surface (PRS) of FPRA for wideband and high aperture efficiency performances. Wideband RCS reduction is realized by designing the phase differences 90˚ in turn among three adjacent frequency-selective surfaces. The wideband 3 dB gain bandwidth and high aperture efficiency performances are obtained by designing the PRS with a positive reflection phase gradient vs frequency and a negative transverse-reflection magnitude gradient, respectively. The measured results show that the gain of the proposed antenna is 11.5 dBi greater than that of the primary source antenna with a peak value 15.5 dBi at 9.2 GHz. The aperture efficiency is 73.3%. The 3-dB gain bandwidth is from 8.75 to 11.47 GHz (26.9%), and the RCS reduction can be obtained effectively from 8.2 to 20 GHz (83.7%).
2021-02-17
PIER Letters
Vol. 96, 113-119
A Compact Broadband Folded Dipole Antenna Element with Ball Grid Array Packaging for New 5G Application
Xiubo Liu , Wei Zhang , Dongning Hao and Yanyan Liu
A compact broadband folded dipole antenna element with a ball grid array packaging is proposed in this letter. The compact antenna element is fabricated on a low-cost FR4 substrate consisting of only one dielectric layer. The solder balls are mounted on the square ground metal plane of the antenna element to form the ball grid array (BGA) packaging, which allows the antenna element to be surface mounted with other surface-mount devices (SMDs). Furthermore, ball grid array packaging has great potential for minimizing the size of antenna elements. The dimension of the proposed antenna element is only 6 mm × 6 mm × 1.6 mm. Parameter analysis shows that the solder balls have little effect on antenna performance. The proposed folded dipole antenna element is fed by a 50 Ω grounded coplanar waveguide (GCPW) transmission line on the evaluation board. The antenna prototype has been designed, analyzed, and manufactured. Measured results of the prototype show that the -10 dB impedance bandwidth is 45.4 % (22.3-35.4 GHz), and the peak gain achieves 6.62 dBi at 35 GHz. The measurement results show that the proposed antenna element has great potential for the 5G millimeter wave application.
2021-02-17
PIER C
Vol. 110, 55-66
Miniature Folded Dipole in Rotational Symmetry for Metal Tag Design
Shao-Ming Chiang , Tong-Lin Lee , Eng Hock Lim , Pei-Song Chee , Yong Hong Lee , Fwee-Leong Bong , Yeong-Nan Phua and Boon-Kuan Chung
In this paper, a miniature folded dipole is proposed for designing a metal-mountable UHF RFID tag. The proposed tag antenna is low in profile and it has a compact size of 40 mm × 40 mm ×3.1 mm (0.12λ × 0.12λ × 0.009λ). Folding the dipole arms into a two-fold rotational symmetrical style can miniaturize the tag footprint for achieving high compactness. It has been found that the capacitive coupling mechanism between the rotational symmetrical radiating arms is effective in enhancing the vertical radiation, which subsequently improves the achievable read distance in the boresight direction. Also, an incorporated circular loop can provide additional inductance for achieving good impedance matching with the RFID chip. For the proposed tag antenna, a full ground plane is inserted underneath the radiator for isolating it from the backing metal, making the tag tolerant to the metallic platform. The proposed tag antenna is able to achieve a maximum read distance of 7 m at 4 W EIRP when it is tested on metal.
2021-02-17
PIER M
Vol. 101, 47-58
Contact ECG Recording Using Copper and E-Textile Based Flexible Dry Electrodes
Kai Ren , Ruyu Ma , Mohammad Ranjbar Nikkhah , Steve Eggleston , Yu-Jiun Ren and Nader Behdad
We present experiments of contact electrocardiograms (ECG) recording using copper and e-textile-based flexible dry electrodes. In this work, dry electrodes with different shapes, sizes, and materials were designed and fabricated. In cardiac monitoring using these flexible dry electrodes, three different conditions were considered, which are sitting, standing, and walking. To evaluate the performances of the fabricated dry electrodes, average-to-variation ratios (AVR) of the recorded ECG signals measured using the flexible dry electrodes were calculated and compared with those measured using the commercially-available wet electrodes in all three conditions. The AVR results demonstrate that the dry electrodes have a similar performance as the commercially-available wet electrodes in the sitting and standing conditions and a better performance in the walking condition. These results suggest that it is possible to weave dry e-textile-based electrodes in normal clothing and use them for continuous monitoring of ECG signals in different conditions.
2021-02-16
PIER C
Vol. 110, 39-54
Split Ring Slot Loaded Compact CPW-Fed Printed Monopole Antennas for Ultra-Wideband Applications with Band Notch Characteristics
Kavneet Kaur , Ashwani Kumar and Narinder Sharma
A compact CPW-fed ultra-wideband monopole antennas with band notch characteristics using Split Ring Slots (SRSs) are proposed in this manuscript. Initially, the antenna is designed by using a rectangular shaped patch, and it has been modified to obtain enhanced impedance bandwidth (VSWR ≤ 2) throughout the entire UWB frequency range. Further, the notch band element (split ring slot) has been introduced in the geometry of proposed antenna to generate the band rejection at WLAN frequency centered at 5.3 GHz (5.15-5.81 GHz). Another antenna has been designed by varying the dimensions of SRS to get the rejection of frequency at an X-band satellite communication system centered at 7.4 GHz (7.16-7.71 GHz). The overall size of proposed UWB antennas is compact (18 × 18 mm2), and it is designed on a low cost FR4 glass epoxy substrate with 1.6 mm thickness and 4.4 dielectric constant. The proposed antennas with and without a notch filter are designed by using HFSS V13 simulator and fabricated for the validation of simulated results. Experimental and simulated results are compared and found in reasonable agreement with each other.
2021-02-16
PIER C
Vol. 110, 27-38
A Permittivity Measurement Method Based on Back Propagation Neural Network by Microwave Resonator
Honggang Hao , De-Xu Wang and Zhu Wang
In order to solve the problem of the poor performance of the traditional microwave resonance method in multi-parameter fitting data processing, a permittivity measurement method based on Back Propagation (BP) Neural Network algorithm is proposed, which introduces the Neural Network algorithm in data processing of microwave resonance method for the first time. In order to verify the effectiveness of this method in measuring permittivity, a microstrip line structure is used as a microwave resonator. It achieves high sensitivity (4.62%) by loading periodically arranged open resonant rings. On this structure, the reflection coefficients S11 of different material samples are simulated as the data of neural network. The amplitude and phase of S11 and resonant frequency f are taken as the input layer of the neural network, respectively. The dielectric constant and dielectric loss are taken as the output to establish the neural network model. The simulated and measured results show that the dielectric constant and dielectric loss calculated by the model are basically consistent with the data provided by the manufacturer. The relative error of the dielectric constant is less than 0.6%, and the error of the dielectric loss is less than 0.0005. Compared with the traditional data processing of microwave resonance method, the introduction of BP neural network algorithm can significantly improve the accuracy of dielectric constant measurement.
2021-02-16
PIER C
Vol. 110, 15-26
Analysis of a Nonlinear Magnetic Coupling Wireless Power Transfer System
Meng Wang , Li Ren , Yanyan Shi , Weina Liu and Hao Ran Wang
In near-field energy transmission, it has been proved that magnetic coupling wireless power transfer (MC-WPT) is a promising energy transmission method. Traditionally, the MC-WPT system is established based on a linear resonant circuit. Recently, it has been reported that nonlinear MC-WPT system shows more advantages. However, nonlinear characteristics of the nonlinear MC-WPT system are not fully recovered. In this paper, a nonlinear MC-WPT system which can be described by Duffing equation is presented. The mathematical model of the equivalent circuit is developed. The related nonlinear characteristics under the impact of driving force are investigated. It is found that the driving force has a direct impact on the system performance. The operation of the nonlinear MC-WPT system varies from periodic sinusoidal state to periodic non-sinusoidal state even to chaotic state when the driving force increases. It should be mentioned that the chaotic state should be avoided. Generally, the MC-WPT system should be operated in periodic sinusoidal state which only covers a small range of driving force. For the system operated in periodic non-sinusoidal state, a waveform correcting circuit is designed. The simulated and experimental results show that the restriction of the driving force on the operation of the system is eliminated with a waveform correcting circuit added. It is possible for the nonlinear MC-WPT system to be operated in a much wider range.
2021-02-16
PIER C
Vol. 109, 275-287
A Triple-Band Antenna with a Metamaterial Slab for Gain Enhancement and Specific Absorption Rate (SAR) Reduction
Selvaraj Imaculate Rosaline
A compact triple-band antenna of size 20×13×1.6 mm3 for WLAN (2.4/5 GHz) and WiMAX (3.5 GHz) applications and a metamaterial slab for Specific Absorption Rate (SAR) reduction are proposed in this paper. The antenna comprises a rectangular patch with two conjoint square split rings, attached along its top edge, to excite two resonances in the 2.5 GHz and 5.5 GHz range. The antenna is also backed with a slotted ground plane structure to achieve miniaturization. The radiator is subsequently slotted to yield the third tone around 3.5 GHz. Several parameters are tuned independently to achieve the desired bands of resonance around (2.2-2.6) GHz, (3.40-3.60) GHz, and (5.0-6.9) GHz with impedance bandwidths of 17%, 5.5%, and 46%, respectively. To validate the simulated results, the designed antenna is fabricated and measured experimentally. Later, a metamaterial slab composed of a 5×3 array of pentagonal split-rings printed on a 20×13×1.6 mm3 FR-4 substrate is placed above the antenna at a suitable distance to increase the gain as well as to reduce the SAR. Inclusion of this slab improved the maximum radiation efficiency and gain of the proposed antenna from 65% and 2.7 dB to 80% and 3 dB. A cubical tissue model is designed and used for simulation. SAR reduction of 84.5% is inferred with the metamaterial slab. This paper has taken a cubical tissue model for SAR calculation, which can be further enhanced by taking a human phantom model in future.
2021-02-15
PIER Letters
Vol. 96, 105-111
A Dual Band-Notched Antenna for UWB Applications
Xiao-Yan Zhang , Huihui Xu , Yan Xie and Qiutong Wu
An ultra-wideband (UWB) flexible antenna with a dual band-notched property is designed in this letter. This antenna is fed by a coplanar waveguide (CPW) tapered transmission line to achieve an impedance bandwidth of 1.95-35 GHz for VSWR<3. A double C-shaped slot within the monopole radiation patch and two L-shaped slots etched on the ground are introduced to reject the bands of 3.5 GHz (3.1-3.9 GHz) and 5.5 GHz (4.7-5.74 GHz) respectively, which are assigned to WiMax and WLAN applications. A Rogers4350 substrate is used to realize a low profile (0.29λL×0.22λL×0.00065λL, where λL is the free-space wavelength of the lowest operating frequency). The measured results show that the antenna has a UWB omnidirectional radiation characteristic that is suitable for UWB wireless communications.