Search Results(13735)

2021-04-06
PIER C
Vol. 111, 173-189
Design of a 3-Port Compact MIMO Antenna Based on Characteristics Mode Analysis Approach
Asutosh Mohanty and Bikash Ranjan Behera
In this paper, a 3-port compact MIMO antenna is designed using Characteristics Mode Analysis (CMA). It consists of three antenna elements. Ant-1 is 45˚ tilted, and Ant-2 and Ant-3 has L-bend transitions. Ant-2 is 1/4th, and Ant-3 is 1/2 in size w.r.t. Ant-1. To improve 10-dB impedance bandwidth and isolation > 17 dB, fractal slot is etched at bottom, and deformity in antenna structures has three distinct modes. Ant-1 operates in UWB mode from (4.8-10.6) GHz with 75.32% IBW, and Ant-2 and Ant-3 operate in wide-band mode from (8.1-10.8) GHz with 28.57% IBW and from (7.2-9.8) GHz with 30.58% IBW. CMA is utilized to investigate the anonymous behaviour of antenna, predicts modal significance (MS), characteristics angle (CA) and eigen values (EV). From these parameters bandwidth potential, radiation energy source and Q-factor are estimated. For investigations first six modes are swept in modal navigator, where dominant modes are traced as ideal antenna resonant modes, and unwanted modes are neglected. The antenna gain is (3-7) dBi with ECC < 0.08. The proposed antenna is fabricated and measured for validation. From the outcomes, it is found suitable for UWB, air traffic and defense tracking, meteorological, amateur satellite, maritime vessel traffic controlling, and X-band satellite applications.
2021-04-06
PIER M
Vol. 102, 27-37
A CPW-Fed UWB-MIMO Antenna with High Isolation and Dual Band-Notched Characteristic
Jian-Yong Zhou , Yanfei Wang , Jia-Ming Xu and Chengzhu Du
A coplanar waveguide (CPW) fed multiple-input multiple-output (MIMO) ultra-wideband (UWB) antenna with high isolation and dual band-notched characteristic is proposed. The antenna consists of two orthogonal circle patches. An annular SRR slot and a rectangular SRR slot are added on the patches to produce two notched bands. High isolation is successfully acquired by adopting a double Y-shaped branch between the two radiation elements. By cutting the fractional substrate, the antenna size has been reduced by 31.4 percent. The measured results show that the working bandwidth of the antenna covers 2.36-12 GHz, and at the same time, the notched bands cover 3.37 GHz-3.98 GHz and 4.71 GHz-5.51 GHz. The isolation is better than 21 dB. The paper also studies the radiation pattern, peak gain, and envelope correlation coefficient (ECC) of the UWB MIMO antenna.
2021-04-05
PIER C
Vol. 111, 163-172
A q-Band Current-Reused Low Noise Amplifier with Simultaneous Noise and Input Matching
Chunshuang Xie , Peng Wu , Zhongjun Yu and Cheng Tan
In this paper, a Q-band GaAs low noise amplifier (LNA) for satellite communications is presented. The LNA is designed using common-source (CS) topology, self-biased configuration and current-reused technology. Simultaneous noise and input matching are achieved by employing source series inductance. The current-reused LNA is fabricated in a 90 nm GaAs pseudomorphic high electron mobility transistor (pHEMT) process. On-wafer measurement results show that the LNA features a small-signal gain of 23.8~24.5 dB, noise figure (NF) of 2~2.1 dB, and output 1-dB compression point (OP1 dB) of 6.6~8 dBm over 36~42 GHz, while consuming 10.9 mA with a supply voltage of 5 V. The chip size is 1.6×0.8 mm2 including all RF and dc pads.
2021-04-03
PIER
Vol. 170, 129-152
L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for SMAP Active Algorithms
Huanting Huang , Tien-Hao Liao , Seung Bum Kim , Xiaolan Xu , Leung Tsang , Thomas J. Jackson and Simon Yueh
Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface and soil permittivity. The volume scattering and doublebounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm3/cm3, 0.082 cm3/cm3, and 0.082 cm3/cm3 for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).
2021-04-03
PIER C
Vol. 111, 147-162
Nonuniform Circular Array Synthesis for Low Side Lobe Level Using Dynamic Invasive Weeds Optimization
Elhadi Kenane , Fadila Benmeddour and Farid Djahli
The use of invasive weeds optimization in the synthesis of antenna arrays has become popular in the last few years. This optimization method is robust, simple and can be easily improved. Like other stochastic algorithms, IWO suffers from premature convergence and other drawbacks. To overcome these problems, a dynamic IWO is proposed and used for synthesizing two antenna array topologies (linear and circular array). This proposed method tries to achieve an optimal array pattern by acting on the amplitude excitation of elements in the non-uniform circular array and their positions on the array to obtain an array pattern with deep nulls in some directions of interferences and low side lobe level. For the linear array, the nulls control can be achieved by acting on the relative amplitude excitation of each element in the array for an optimal inter-element spacing. This proposed method improves the performance greatly and allows to achieve a maximum reduction in side lobe level in band Nulls with an acceptable dynamic range ratio (DRR). To show the performance of the proposed method, for each topology, our results are compared to other results of the literature.
2021-04-01
PIER M
Vol. 102, 13-26
Scattering Characteristics of Ultra-High-Voltage Power Lines in Spaceborne SAR Images
Shuzhu Shi , Ailing Hou , Yan Liu , Lei Cheng and Zhiwei Chen
Owing to its all-day and all-weather imaging capabilities, high-resolution spaceborne synthetic aperture radar has shown great potential for the effective monitoring of wide-area, ultra-high-voltage (UHV) transmission lines. Scattering characteristics of UHV power lines in 3-m-resolution TerraSAR-X images is analyzed in this paper. First the study area and structure of the UHV transmission line are introduced. Then, the data processing method is described, which includes the preprocessing of TerraSAR-X images and target feature extraction. Finally, the scattering characteristics of the UHV power line are analyzed, and the analysis results demonstrate that the UHV power line can be visible in a TerraSAR-X image only when the angle between its extension direction and the azimuth of the sub-satellite ground track is within ±15°. Furthermore, besides the span length, the spatial location of the UHV power line in a TerraSAR-X image is also influenced by the angle between its extension direction and the azimuth of the sub-satellite ground track, as well as by the height difference between adjacent pylons.
2021-03-29
PIER Letters
Vol. 97, 51-59
Compact Quarter Mode and Eighth Mode Substrate Integrated Waveguide Bandpass Filters with Frequency-Dependent Coupling
Zhiwei Shi , Guohui Li , Yulu Song and Binbin Cheng
This paper presents two size-miniaturized quarter mode (QM) and eighth mode (EM) substrate integrated waveguide (SIW) bandpass filters (BPFs), which are embedded with a novel frequency-dependent coupling (FDC) structure. The proposed FDC is implemented as a composition of balanced folding lines and inductive iris. One additional transmission zero (TZ) introduced by FDC between two cavities leads to higher frequency selectivity and better out-of-band rejection. Higher order modes suppression appears by combining the loaded paired open stubs on feeder lines with FDC technique, achieving a wide stopband. Meanwhile, the circuit dimension is further reduced by symmetrically cutting SIW. To validate the novel approach, the frequency-dependent coupling matrix (CM) is implemented to determine characteristics of the proposed structure in theory, QM- and EM-SIW BPFs loaded with FDC have been designed, fabricated and measured. Experimental results illustrate the characteristics of miniaturization and good performance. All results are in good agreement.
2021-03-29
PIER B
Vol. 92, 47-70
Design and Implementation of Field-Programmable Gate Array Based Fast Fourier Transform Co-Processor Using Verilog Hardware Description Language
Yung-Chong Lee , Yee Kit Chan and Voon Koo
In this research project, the hardware implementation of a Field-Programmable Gate Array (FPGA) based Fast Fourier Transform (FFT) will be carried out by using Verilog Hardware Description Language (HDL). Since FFT serves as the core for the Range Doppler Algorithm (RDA) in Synthetic Aperture Radar (SAR) processing, it is of paramount importance to evaluate the algorithm and its computational complexity for the design of an efficient FFT hardware architecture. The design process and Verilog hardware description language which is used to describe and model a digital FPGA-based SAR processor will be introduced. Detailed explanation of the hardware implementation for FFT and Inverse Fast Fourier Transform (IFFT) in SAR processing are thus presented. The performance evaluations of the proposed processors including the comparison of the proposed processor with MATLAB-based processor, timing considerations of the processor, and lastly the hardware resources usage considerations are delivered at the end of this paper.
2021-03-27
PIER C
Vol. 111, 135-145
Design and Implementation of Improved Fractal Loop Antennas for Passive UHF RFID Tags Based on Expanding the Enclosed Area
Qusai Hadi Sultan and Ahmed M. A. Sabaawi
In this paper, new fractal curves are designed, simulated, and implemented for passive UHF RFID application. 5-, 6-, 7-, and 8-sides polygon fractal loops are proposed and implemented in this work based on the 2nd iteration. It is shown that increasing the number of sides can improve the performance and minimize the size of the fractal antenna. The designed fractal loop antennas have been compared with other fractal loop antennas published previously, and the recent antennas show a better performance. The designed antennas are fabricated using PCB technology, and the antenna parameters are measured experimentally and compared to CST simulations. There is an acceptable agreement between the simulated and measured results. The effect of different materials on antenna performance is also studied.
2021-03-26
PIER C
Vol. 111, 119-133
On the Performance of Reconfigurable Intelligent Surface Aided Power Line Communication System Under Different Relay Transmission Protocols
Kehinde Oluwasesan Odeyemi , Pius Adewale Owolawi and Oladayo O. Olakanmi
In this paper, the performance analysis of a dual-hop reconfigurable intelligent surface (RIS)-aided power line communication (PLC) system is presented under different relay transmission protocols. The relay is assumed to be decode-and-forward (DF) or amplify-and-forward (AF) relaying protocol. It is also assumed that the RIS link is subjected to Rayleigh fading while the PLC link undergoes Log-normal fading with the influence of additive background and impulsive noise. To evaluate the system performance, the end-to-end cumulative distribution function for both relaying protocols are derived. Based on these, the analysis expressions for the system outage probability and average bit error rate (ABER) are derived under DF and AF relaying protocols. To gain further insight about the system performance, the asymptotic analysis for the derived expressions is obtained at high signal-to-noise ratio regime. The findings illustrate the significant impact of the number of RIS elements and impulsive noise on the overall system performance. In addition, the accuracy of the analytical results is justified through Monte-Carlo simulations.
2021-03-25
PIER Letters
Vol. 97, 45-50
Matrix Splitting Technique for Solving Electromagnetic Scattering Problems Over a Wide Angle by Compressive Sensing
Qi Qi , Xin-Yuan Cao , Ming Sheng Chen , Zhixiang Huang and Xian-Liang Wu
By combining the method of moments and the compressive sensing theory, a rapid scheme for analyzing the electromagnetic scattering problems over a wide incident angle has been developed, by which the calculation times of traditional method of moments can be decreased efficiently. To further reduce the calculation times, the matrix splitting technique is proposed to establish a new scheme in this paper. The basic principle is elaborated in detail, and the effectiveness of the new scheme is verified by numerical results.
2021-03-25
PIER C
Vol. 111, 109-118
Design and Simulation of an Antenna for Noninvasive Temperature Detection Using Microwave Radiometry
Kamya Yekeh Yazdandoost
A non-invasive thermometry approach for monitoring core (internal) tissue temperature using microwave radiometry is presented. We detail the design and analyses of a microwave antenna capable of detecting core temperature at depth. Performance of the radiometer with a printed dipole antenna is evaluated at frequency of 1.4 GHz in a multilayer 3D computational structure consisting of skin, fat, and muscle. To study this approach, a human tissue model was constructed with skin, fat, and deep muscle tissues having electrical properties at working frequency of 1.4 GHz. One of the main challenges is the Radio Frequency (RF) interface; hence, frequency selection will be important. Moreover, the antenna must be designed for characteristics in close proximity of biological medium in the selected frequency band. The Specific Absorption Rate (SAR) and volume loss density have been used to determine the amount of absorbed power in each tissue layer and thus emitted power from each tissue layer. This approach has been designed to detect thermal emissions radiated from tissue up to 23 mm deep. We present the numerical analysis of 3D tissue-layer power emission and temperature sensing by a microwave radiometric antenna from a single frequency band of 1.4 GHz. Computed results show that this method senses the internal temperature in each tissue layer.
2021-03-24
PIER B
Vol. 92, 19-45
Characteristics Mode Analysis: A Review of Its Concepts, Recent Trends, State-of-the-Art Developments and Its Interpretation with a Fractal UWB MIMO Antenna
Asutosh Mohanty and Bikash Ranjan Behera
In this article, we present a compact and efficient diametrically-fed dual port fractal UWB MIMO antenna for portable handheld wireless devices. The electromagnetic behaviour on conducting body is analyzed through classical approach based characteristics mode analysis (CMA). Their intrinsic characteristics are explored on the basis of (a) modal surface current distributions, (b) narrow/broad bandwidth capability and (c) radiation potentials. Concurrent analysis is persuaded on diametrically-fed dual port fed fractal conducting surface, that provides interesting facets on the combinatory effect of electromagnetic performance and physical behaviour on metallic radiator, metallic ground planes (unconnected/connected) and combination of two aforementioned metallic compact geometries. Theoretical insights are investigated for essential/non-essential modes existing in proposed geometry. The investigation through CMA also gives plethoric information on the feed location of antenna on modal surface currents and similar trends to capture its radiation potentials on the current nulls existing in the physical body. A broad classification of modes is explained, covering the CMA modal dynamics such as (a) characteristics angle (CA), (b) eigen values (EV) and (c) modal significance (MS). These additive parameters in general reflect the resemblance of Q-factor≈B.W. for narrowband/wideband traits, electrically/magnetically coupled energy behaviour and radiative potential for far-field propagation. Thus, in a nut-shell, it can be inferred that `CMA provides physically intuitive guidance for the analysis and designing of antenna structures'. To support the findings highlighted in this particular study, a concise review about the theory of characteristic modes and the practical examples that use such concepts are taken into consideration.
2021-03-24
PIER C
Vol. 111, 97-108
Design of Broadband Circularly Polarized Square Slot Antenna for UHF RFID Applications
Rui Ma and Quanyuan Feng
A novel circularly polarized (CP) square slot antenna for covering the universal ultrahigh-frequency (UHF) radio frequency identification (RFID) band is proposed. The antenna uses low-cost FR4 material as the dielectric substrate and coplanar waveguide (CPW) to feed. Circularly polarized radiation can be realized by embedding two symmetrical rectangular grounded planes with L-shaped slits in opposite corners of the square slot. The widened vertical tuning stub at the end of the signal line fed by CPW can improve the CP and impedance matching operation, and finally realizes broadband characteristic. The measured 10 dB impedance bandwidth and 3 dB axial ratio (AR) bandwidth are 1250 MHz (710-1960 MHz) and 180 MHz (840-1020 MHz), respectively. The measured peak gain is about 3.4 dBi in the whole UHF RFID frequency band (0.84-0.96 GHz). The dimension of the CP square slot antenna is 116×116 ×1.6 mm3. The proposed antenna has the advantage of simple structure, is easy to be processed, can exhibit dual CP radiation characteristic, and covers the broadband frequency range, which can be applied to the UHF RFID handheld reader environment.
2021-03-23
PIER Letters
Vol. 97, 35-43
An Online Extraction Method of Noise Source Impedance Based on Network Analyzer
Ming-Xing Du , Yang Li , Qiqi Dai and Ziwei Ouyang
This paper presents an online noise source impedance extraction method based on network analyzer. Firstly, the composition scheme of the measurement method is given, the equivalent circuit model of the measurement system established, and the port structure of the equivalent circuit analyzed. Secondly, two known standard resistances are used to calibrate the measuring system and connecting wires. Finally, the passive device and DC/DC converter are used as the equipment to be tested, and the measurement results are compared with those of other methods and impedance analyzer. The comparison results show that the measurement method has high measurement accuracy and good temperature sensitivity.
2021-03-22
PIER Letters
Vol. 97, 27-34
Fast Estimate of Plane Wave Attenuation of Conductive Powders for Rapid Deployment of Customized Cement Based Microwave Absorbing Solutions
Narayanan Sabarish and Madaswamy Jayakumar
Enhancing the electromagnetic absorption properties of pozzolanic cement provides scope for low cost realisation of frequency screened buildings. Electromagnetic wave attenuation attribute of conductive filler inclusions determines the absorption properties of filler loaded cement mortar. A transmission line based rapid measurement technique for the speedy estimate of microwave attenuation of conductive fillers is presented, providing quick approximates of cement mortar thickness for realizing customized absorption loss. Ash from three units of steel plant including EAF, AoD, and ARS units is investigated. Coaxial transmission line supports TEM propagation, hence is well suited for estimating plane wave characteristics. Ash filled coaxial transmission structures are subjected to scattering matrix measurements in the frequency range 800 MHz-4 GHz. Plane wave attenuation is estimated from the scattering matrix transfer coefficient (S21). Ashes guarantee minimum 10 dB/m attenuation in the specified frequency range with ash from ARS unit providing loss over 50 dB/m. The database of customized cement mortar (composite) thickness for realizing varied absorption losses, incorporating ARS ash, is projected. The presented technique reduces the requirement of anechoic chambers, broad band horns, and liability of prototyping large mortar samples (all frequency dependent), for estimating shielding properties of conductive filler loaded cement mortar composites, over wide band. Cement panels with customized absorption loss provide scope as low cost solution for managing device co-location issues encountered in evaluating EMI/EMC concerns is future IoT based systems.
2021-03-22
PIER C
Vol. 111, 83-96
A Duo of Graphene-Copper Based Wideband Planar Plasmonic Antenna Analysis for Lower Region of Terahertz (THz) Communications
Muhammad Irfan Khattak , Muhammad Anab and Nabeel Muqarrab
In this article, a novel idea of designing a graphene based planar plasmonic patch antenna for terahertz wireless applications with detailed analysis is proposed. Based on the Surface Plasmon Polariton Waves (SPP) behaviour in graphene, a novel wideband planar graphene-based patch antenna is investigated here. As graphene with its wondered properties supports SPP in much lower infrared frequencies unlike the noble metals such as gold and Nickle which support SPP at much higher frequencies, the proposed planar antenna works on THz gap (0.1-10 THz) by covering a range of frequencies from 0.1 THz and goes beyond 10 THz, thus covering the whole THz gap. The proposed antenna is a simple planar structure with overall size of 31.8 x 6.4 μm2 having a Silicon with a relative permittivity (εr) of 11.9 used as a substrate material, and simple plane wave is used for excitation. Furthermore, radiating material comprises single layer graphene and copper with a partial ground of copper material, and for comparison purpose, only graphene layer as a radiating material is also analysed. Single layer graphene conductivity having chemical potential of 0.4 ev, relaxation time of 0.6 ρs, and a temperature of 298 K is discussed. Parametric analysis for getting optimum results is also studied. The unity peak absorption of above 98% is observed throughout the resonating frequency range. The proposed design is numerically simulated in CST MWS v2020, and other parameters results, such as unity peak absorption and surface current, are also discussed.
2021-03-22
PIER M
Vol. 101, 219-239
On the Distortionless of UWB Wearable Hilbert-Shaped Metamaterial Antenna for Low Energy Applications
Ahmed Imad Imran , Taha Ahmed Elwi and Ali J. Salim
This paper presents a miniaturized antenna-based wearable self-powered wireless systems; the proposed study identifies the possibility to compact a flexible Solant-Rectenna integrated to low energy devices. The proposed system uses the obtained DC currents from RF rectifier and solar panel to recharge batteries. A low-profile Hilbert-shaped metamaterial (MTM) array forming a rectangular patch is conducted to minimize the shadowing effects to 13.3% on the solar panel area. Nevertheless, an Electromagnetic Bandgap (EBG) square pads array is introduced as defects on the ground plane to remove the negative effects, in terms of losses, of the solar panel bus-bar on the antenna performance. Moreover, the proposed EBG ground plane is utilized to isolate the human body from the undesired electromagnetic radiation leakage in addition to minimize the antenna impedance mismatch caused by the proximity to human tissues. For this, the Specific Absorption Rate (SAR) is analysed numerically to assess the feasibility of the proposed EBG layer. The antenna expresses a frequency bandwidth, S11 < -10 dB, from 0.8 GHz up to 10 GHz; moreover, the EBG inclusions increase the front to back ratio to provide the gains of -10 dBi, -4 dBi, 0 dBi at 0.915 GHz, 1.88 GHz, and 2.45 GHz, respectively. Moreover, a SAR reduction is achieved up to 64% down after the EBG layer introduction. In addition, the antenna distortion effect in terms of group delay (Gd) after 3.1 GHz up to 10 GHz is tested; the maximum variation is found to be less than 1ns which shows a linear phase response with distortionless waveforms. Such a feature is found very suitable for UWB applications in modern wireless systems. The antenna performance improvement after introducing the proposed EBG defects is validated experimentally and numerically. The solar panel I-V characteristics are measured after the antenna structure introduction. Next, the solant RF port is connected to a rectifier circuit to realize the rectenna performance port that collects the RF energy at three bands in terms of efficiency spectra. Finally, it is proofed that the proposed Solant-Rectenna offers an excellent, compacted, and flexible candidate for the wearable self-powered devices at different bands.
2021-03-20
PIER M
Vol. 101, 207-218
Diffraction of the Electromagnetic Plane Waves by Double Half-Plane with Fractional Boundary Conditions
Vasil Tabatadze , Kamil Karaçuha , Eldar I. Veliyev and Ertuğrul Karaçuha
In this article, the diffraction of E-polarized electromagnetic plane waves by a double half-plane structure is taken into account. The shift of the upper half-plane through the horizontal axis for different wavenumber and boundary conditions are considered. On the double half-plane structure, fractional boundary conditions are required on the half-plane surfaces. The half-planes are parallel to each other with a variable shift in distance and location. The formulation of the problem is given where the boundary condition is explained, and the integral equations for each half-plane are obtained by using fractional calculus and Fourier Transform techniques. Then, for numerical calculations, the induced current on each half-plane is expressed as the summation of Laguerre polynomials. This leads to having a system of linear algebraic equations needed to be solved. The numerical results show that the shift and the distance between the half-planes give a very important effect on the field values inside and outside the guiding structure. The results are compared and analyzed with Method of Moment and previous results.
2021-03-19
PIER B
Vol. 92, 1-18
Capacitance Matrix Revisited
Ivica Smolić and Bruno Klajn
The capacitance matrix relates potentials and charges on a system of conductors. We review and rigorously generalize its properties, block-diagonal structure and inequalities, deduced from the geometry of system of conductors and analytic properties of the permittivity tensor. Furthermore, we discuss alternative choices of regularization of the capacitance matrix, which allow us to find the charge exchanged between the conductors having been brought to an equal potential. Finally, we discuss the tacit approximations used in standard treatments of the electric circuits, demonstrating how the formulae for the capacitance of capacitors connected in parallel and series may be recovered from the capacitance matrix.