Vol. 97
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-29
Compact Quarter Mode and Eighth Mode Substrate Integrated Waveguide Bandpass Filters with Frequency-Dependent Coupling
By
Progress In Electromagnetics Research Letters, Vol. 97, 51-59, 2021
Abstract
This paper presents two size-miniaturized quarter mode (QM) and eighth mode (EM) substrate integrated waveguide (SIW) bandpass filters (BPFs), which are embedded with a novel frequency-dependent coupling (FDC) structure. The proposed FDC is implemented as a composition of balanced folding lines and inductive iris. One additional transmission zero (TZ) introduced by FDC between two cavities leads to higher frequency selectivity and better out-of-band rejection. Higher order modes suppression appears by combining the loaded paired open stubs on feeder lines with FDC technique, achieving a wide stopband. Meanwhile, the circuit dimension is further reduced by symmetrically cutting SIW. To validate the novel approach, the frequency-dependent coupling matrix (CM) is implemented to determine characteristics of the proposed structure in theory, QM- and EM-SIW BPFs loaded with FDC have been designed, fabricated and measured. Experimental results illustrate the characteristics of miniaturization and good performance. All results are in good agreement.
Citation
Zhiwei Shi, Guohui Li, Yulu Song, and Binbin Cheng, "Compact Quarter Mode and Eighth Mode Substrate Integrated Waveguide Bandpass Filters with Frequency-Dependent Coupling," Progress In Electromagnetics Research Letters, Vol. 97, 51-59, 2021.
doi:10.2528/PIERL21012201
References

1. Shen, W., "Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 305-307, Apr. 2018.
doi:10.1109/LMWC.2018.2808408

2. Li, P., H. Chu, and R.-S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Trans. Compon. Packaging Manuf. Technol., Vol. 7, No. 6, 956-963, Jun. 2017.
doi:10.1109/TCPMT.2017.2677958

3. Li, L., Z. Wu, K. Yang, X. Lai, and Z. Lei, "A novel miniature single-layer eighth-mode SIW filter with improved out-of-band rejection," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 5, 407-409, May 2018.
doi:10.1109/LMWC.2018.2813883

4. Szydlowski, L., A. Jedrzejewski, and M. Mrozowski, "A trisection filter design with negative slope of frequency-dependent cross coupling implemented in substrate integrated waveguide (SIW)," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. v, 456-458, Sep. 2013.
doi:10.1109/LMWC.2013.2272611

5. Szydlowski, L., N. Leszczynska, and M. Mrozowski, "A linear phase filter in quadruplet topology with frequency-dependent couplings," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 1, 32-34, Jan. 2014.
doi:10.1109/LMWC.2013.2288178

6. Jedrzejewski, A., L. Szydlowski, and M. Mrozowski, "Miniaturized bandpass substrate integrated waveguide filter with frequency dependent coupling realized using a symmetric GCPW discontinuity," Microw. Opt. Technol. Lett., Vol. 57, No. 8, 1818-1821, Aug. 2015.
doi:10.1002/mop.29203

7. Li, X., C. You, H. Yu, and Z. He, "Substrate integrated folded waveguide controllable mixed electric and magnetic coupling structure and its application to millimetre-wave pseudo-elliptic filters," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, e21074, 2017.
doi:10.1002/mmce.21074

8. Liu, Q., D. Zhou, D. Zhang, and D. Lv, "A novel frequency-dependent coupling with flexibly controllable slope and its applications on substrate-integrated waveguide filters," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 11, 993-995, Nov. 2018.
doi:10.1109/LMWC.2018.2872325

9. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

10. He, Y., G. Macchiarella, G. Wang, W. Wu, L. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 4, 1-10, Apr. 2018.
doi:10.1109/TMTT.2018.2791940

11. Li, G., "Coupling matrix optimization synthesis for filters with constant and frequency-variant couplings," Progress In Electromagnetics Research Letters, Vol. 82, 73-80, Mar. 2019.
doi:10.2528/PIERL19011103

12. Leszczynska, N., L. Szydlowski, and M. Mrozowski, "A novel synthesis technique for microwave bandpass filters with frequency-dependent couplings," Progress In Electromagnetics Research, Vol. 135, 35-50, 2013.
doi:10.2528/PIER13011007

13. Su, Z. L., B. W. Xu, S. Y. Zheng, H. W. Liu, and Y. L. Long, "High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 67, No. 1, 32-36, Jan. 2019.
doi:10.1109/TCSII.2019.2903388

14. Cheng, F., X. T. Li, P. Lu, and K. Huang, "SIW filter with broadband stopband by suppressing the coupling of higher-order resonant modes," Electron. Lett., Vol. 55, No. 25, 1345-1347, Dec. 2019.
doi:10.1049/el.2019.2322

15. Hong, J. S., Microstrip Filters for RF/Microwave Applications, A John Wiley & Sons.