Vol. 111
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-25
Design and Simulation of an Antenna for Noninvasive Temperature Detection Using Microwave Radiometry
By
Progress In Electromagnetics Research C, Vol. 111, 109-118, 2021
Abstract
A non-invasive thermometry approach for monitoring core (internal) tissue temperature using microwave radiometry is presented. We detail the design and analyses of a microwave antenna capable of detecting core temperature at depth. Performance of the radiometer with a printed dipole antenna is evaluated at frequency of 1.4 GHz in a multilayer 3D computational structure consisting of skin, fat, and muscle. To study this approach, a human tissue model was constructed with skin, fat, and deep muscle tissues having electrical properties at working frequency of 1.4 GHz. One of the main challenges is the Radio Frequency (RF) interface; hence, frequency selection will be important. Moreover, the antenna must be designed for characteristics in close proximity of biological medium in the selected frequency band. The Specific Absorption Rate (SAR) and volume loss density have been used to determine the amount of absorbed power in each tissue layer and thus emitted power from each tissue layer. This approach has been designed to detect thermal emissions radiated from tissue up to 23 mm deep. We present the numerical analysis of 3D tissue-layer power emission and temperature sensing by a microwave radiometric antenna from a single frequency band of 1.4 GHz. Computed results show that this method senses the internal temperature in each tissue layer.
Citation
Kamya Yekeh Yazdandoost, "Design and Simulation of an Antenna for Noninvasive Temperature Detection Using Microwave Radiometry," Progress In Electromagnetics Research C, Vol. 111, 109-118, 2021.
doi:10.2528/PIERC21011205
References

1. Pompei, F. and M. Pompei, "Non-invasive temporal artery thermometry: Physics, physiology, and clinical accuracy," Proceeding of the SPIE, Vol. 5405, 61-67, Apr. 2004.
doi:10.1117/12.544841

2. Haugk, M., P. Stratil, F. Sterz, D. Krizanac, C. Testori, T. Uray, J. Koller, W. Behringer, M. Holzer, and H. Herkner, "Temperature monitored on the cuff surface of an endotracheal tube reflects body temperature," Critical Care Medicine, Vol. 38, No. 7, 1569-1573, Jul. 2010.
doi:10.1097/CCM.0b013e3181e47a20

3. Moran, J. L., J. V. Peter, P. J. Solomon, B. Grealy, T. Smith, W. Ashforth, M. Wake, S. L. Peake, and A. R. Peisach, "Tympanic temperature measurements: Are they reliable in the critically ill? A clinical study of measures of agreement," Critical Care Medicine, Vol. 35, No. 1, 155-164, Jan. 2007.
doi:10.1097/01.CCM.0000250318.31453.CB

4. Moran, D. S. and L. Mendal, "Core temperature measurement methods and current insights," Sports Medicine, Vol. 32, No. 14, 879-885, Dec. 2002.
doi:10.2165/00007256-200232140-00001

5. Stauffer, P. R., B, W. Snow, D. B. Rodrigues, S. Salahi, T. R. Oliveira, D. Reudink, and P. Maccarini, "Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case," The Neuroradiology Journal, Vol. 27, No. 1, 3-12, Feb. 2014.
doi:10.15274/NRJ-2014-10001

6. Dubois, L., J.-P. Sozanski, V. Tessier, J. C. Camart, J.-J. Fabre, J. Pribetich, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 2, 1755-1761, Oct. 1996.

7. Hand, J. W., G. M. J. VanLeeuwen, S. Mizushina, J. B. Van deKamer, K. Maruyama, T. Sugiura, D. V. Azzopardi, and A. D. Edwards, "Monitoring of deep brain temperature ininfants using multi-frequency microwave radiometry and thermal modelling," Physics in Medicine and Biology, Vol. 46, No. 7, 1885-1903, Apr. 2001.
doi:10.1088/0031-9155/46/7/311

8. Arunachalam, K., P. F. Maccarini, V. De Luca, F. Bardati, B. W. Snow, and P. R. Stauffer, "Modeling the detectability of vesicoureteral reflux using microwave radiometry," Physics in Medicine and Biology, Vol. 55, No. 18, 5417-5435, Sept. 2010.
doi:10.1088/0031-9155/55/18/010

9. Snow, B. W., K. Arunachalam, V. De Luca, P. F. Maccarini, Ø. Klemetsen, Y. Birkelund, T. J. Pysher, and P. R. Stauffer, "Non-invasive vesicoureteral reflux detection: Heating risk studies for a new device," Journal of Pediatric Urology, Vol. 7, No. 6, 624-630, Dec. 2011.
doi:10.1016/j.jpurol.2011.05.005

10. Skou, N. and D. Le Vine, Microwave Radiometer Systems: Design and Analysis, Artech House, Boston, 2006.

11. Woodhouse, I. H., Introduction to Microwave Remote Sensing, CRC Press, Taylor &Francis Ltd., Florida, 2006.

12. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Radiometry, Artech House, USA, 1986.

13. Balanis, C., Antenna Theory: Analysis and Design, JohnWiley & Sons, Inc., Hoboken, New Jersey, 2005.

14. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2016.

15. Birkelund, Y., Ø. Klemetsen, S. K. Jacobsen, K. Arunachalam, P. Maccarini, and P. R. Stauffer, "Vesicoureteral reflux in children: A phantom study of microwave heating and radiometric thermometry of pediatric bladder," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 11, 3269-3278, Nov. 2011.
doi:10.1109/TBME.2011.2167148

16. Leroy, Y., B. Bocquet, and A. Mamouni, "Non-invasive microwave radiometry thermometry," Physiological Measurement, Vol. 19, 127-148, Dec. 1998.
doi:10.1088/0967-3334/19/2/001

17. Report SFCG 34-2R2, , Global RFI surveyon earth exploration-satellite service L-band Sensors (activeand passive), Sept. 2017.

18., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.

19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002

20. Bonds, Q., T. Weller, B. Roeder, and P. Herzig, "A Total Power Radiometer (TPR) and measurement test bed for non contact biomedical sensing applications," Proceeding IEEE Wireless Microwave Technology Conference, 2009.

21. Popovic, Z., P. Momenroodaki, and R. Scheeler, "Toward wearable wireless thermometers for internal body temperature measurements," IEEE Communications Magazine, Vol. 52, No. 10, 118-121, Oct. 2014.
doi:10.1109/MCOM.2014.6917412

22. Momenroodaki, P., W. Haines, M. Fromandi, and Z. Popovic, "Noninvasive internal body temperature tracking with near-field microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2535-2545, May 2018.
doi:10.1109/TMTT.2017.2776952

23. Kummer, W. H., A. T. Villeneuve, and A. F. Seaton, "Advanced microwave radiometer antenna system study," Technical Report, NASA, USA, Aug. 1976.

24., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-forantenna-simulation.pdf.

25. Rodrigues, D. B., P. F. MaccarinS. Salahi, E. Colebeck, E. Topsakal, P. J. S. Pereira, P. Liamo-Vieira, and P. R. Stauffer, "Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism," Proceeding of the SPIE, Vol. 8584, Feb. 2013.

26. Hasgall, P. A., F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0, May 2018, www.itis.swiss/database.

27. Cuddy, J. S., W. S. Hailes, and B. C. Ruby, "A reduced core to skin temperature gradient, not a critical coretemperature, affects aerobic capacity in the heat," Journal of Thermal Biology, Vol. 43, 7-12, Apr. 2014.
doi:10.1016/j.jtherbio.2014.04.002