1. Pompei, F. and M. Pompei, "Non-invasive temporal artery thermometry: Physics, physiology, and clinical accuracy," Proceeding of the SPIE, Vol. 5405, 61-67, Apr. 2004.
doi:10.1117/12.544841 Google Scholar
2. Haugk, M., P. Stratil, F. Sterz, D. Krizanac, C. Testori, T. Uray, J. Koller, W. Behringer, M. Holzer, and H. Herkner, "Temperature monitored on the cuff surface of an endotracheal tube reflects body temperature," Critical Care Medicine, Vol. 38, No. 7, 1569-1573, Jul. 2010.
doi:10.1097/CCM.0b013e3181e47a20 Google Scholar
3. Moran, J. L., J. V. Peter, P. J. Solomon, B. Grealy, T. Smith, W. Ashforth, M. Wake, S. L. Peake, and A. R. Peisach, "Tympanic temperature measurements: Are they reliable in the critically ill? A clinical study of measures of agreement," Critical Care Medicine, Vol. 35, No. 1, 155-164, Jan. 2007.
doi:10.1097/01.CCM.0000250318.31453.CB Google Scholar
4. Moran, D. S. and L. Mendal, "Core temperature measurement methods and current insights," Sports Medicine, Vol. 32, No. 14, 879-885, Dec. 2002.
doi:10.2165/00007256-200232140-00001 Google Scholar
5. Stauffer, P. R., B, W. Snow, D. B. Rodrigues, S. Salahi, T. R. Oliveira, D. Reudink, and P. Maccarini, "Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case," The Neuroradiology Journal, Vol. 27, No. 1, 3-12, Feb. 2014.
doi:10.15274/NRJ-2014-10001 Google Scholar
6. Dubois, L., J.-P. Sozanski, V. Tessier, J. C. Camart, J.-J. Fabre, J. Pribetich, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 2, 1755-1761, Oct. 1996. Google Scholar
7. Hand, J. W., G. M. J. VanLeeuwen, S. Mizushina, J. B. Van deKamer, K. Maruyama, T. Sugiura, D. V. Azzopardi, and A. D. Edwards, "Monitoring of deep brain temperature ininfants using multi-frequency microwave radiometry and thermal modelling," Physics in Medicine and Biology, Vol. 46, No. 7, 1885-1903, Apr. 2001.
doi:10.1088/0031-9155/46/7/311 Google Scholar
8. Arunachalam, K., P. F. Maccarini, V. De Luca, F. Bardati, B. W. Snow, and P. R. Stauffer, "Modeling the detectability of vesicoureteral reflux using microwave radiometry," Physics in Medicine and Biology, Vol. 55, No. 18, 5417-5435, Sept. 2010.
doi:10.1088/0031-9155/55/18/010 Google Scholar
9. Snow, B. W., K. Arunachalam, V. De Luca, P. F. Maccarini, Ø. Klemetsen, Y. Birkelund, T. J. Pysher, and P. R. Stauffer, "Non-invasive vesicoureteral reflux detection: Heating risk studies for a new device," Journal of Pediatric Urology, Vol. 7, No. 6, 624-630, Dec. 2011.
doi:10.1016/j.jpurol.2011.05.005 Google Scholar
10. Skou, N. and D. Le Vine, Microwave Radiometer Systems: Design and Analysis, Artech House, 2006.
11. Woodhouse, I. H., Introduction to Microwave Remote Sensing, CRC Press, Taylor &Francis Ltd., 2006.
12. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Radiometry, Artech House, 1986.
13. Balanis, C., Antenna Theory: Analysis and Design, JohnWiley & Sons, Inc., 2005.
14. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2016.
15. Birkelund, Y., Ø. Klemetsen, S. K. Jacobsen, K. Arunachalam, P. Maccarini, and P. R. Stauffer, "Vesicoureteral reflux in children: A phantom study of microwave heating and radiometric thermometry of pediatric bladder," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 11, 3269-3278, Nov. 2011.
doi:10.1109/TBME.2011.2167148 Google Scholar
16. Leroy, Y., B. Bocquet, and A. Mamouni, "Non-invasive microwave radiometry thermometry," Physiological Measurement, Vol. 19, 127-148, Dec. 1998.
doi:10.1088/0967-3334/19/2/001 Google Scholar
17. Report SFCG 34-2R2, , Global RFI surveyon earth exploration-satellite service L-band Sensors (activeand passive), Sept. 2017.
18., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
20. Bonds, Q., T. Weller, B. Roeder, and P. Herzig, "A Total Power Radiometer (TPR) and measurement test bed for non contact biomedical sensing applications," Proceeding IEEE Wireless Microwave Technology Conference, 2009. Google Scholar
21. Popovic, Z., P. Momenroodaki, and R. Scheeler, "Toward wearable wireless thermometers for internal body temperature measurements," IEEE Communications Magazine, Vol. 52, No. 10, 118-121, Oct. 2014.
doi:10.1109/MCOM.2014.6917412 Google Scholar
22. Momenroodaki, P., W. Haines, M. Fromandi, and Z. Popovic, "Noninvasive internal body temperature tracking with near-field microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2535-2545, May 2018.
doi:10.1109/TMTT.2017.2776952 Google Scholar
23. Kummer, W. H., A. T. Villeneuve, and A. F. Seaton, "Advanced microwave radiometer antenna system study," Technical Report, NASA, USA, Aug. 1976. Google Scholar
24., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-forantenna-simulation.pdf.
25. Rodrigues, D. B., P. F. MaccarinS. Salahi, E. Colebeck, E. Topsakal, P. J. S. Pereira, P. Liamo-Vieira, and P. R. Stauffer, "Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism," Proceeding of the SPIE, Vol. 8584, Feb. 2013. Google Scholar
26. Hasgall, P. A., F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0, May 2018, www.itis.swiss/database.
27. Cuddy, J. S., W. S. Hailes, and B. C. Ruby, "A reduced core to skin temperature gradient, not a critical coretemperature, affects aerobic capacity in the heat," Journal of Thermal Biology, Vol. 43, 7-12, Apr. 2014.
doi:10.1016/j.jtherbio.2014.04.002 Google Scholar