Vol. 170
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-04-03
L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for SMAP Active Algorithms
By
Progress In Electromagnetics Research, Vol. 170, 129-152, 2021
Abstract
Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface and soil permittivity. The volume scattering and doublebounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm3/cm3, 0.082 cm3/cm3, and 0.082 cm3/cm3 for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).
Citation
Huanting Huang Tien-Hao Liao Seung Bum Kim Xiaolan Xu Leung Tsang Thomas J. Jackson Simon Yueh , "L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for SMAP Active Algorithms," Progress In Electromagnetics Research, Vol. 170, 129-152, 2021.
doi:10.2528/PIER21020702
http://www.jpier.org/PIER/pier.php?paper=21020702
References

1. Entekhabi, D., et al., "The Soil Moisture Active Passive (SMAP) mission," Proceedings of the IEEE, Vol. 98, 704-716, May 2010.
doi:10.1109/JPROC.2010.2043918

2. Entekhabi, D., S. Yueh, P. O’Neill, and K. Kellogg, SMAP Handbook, 400-1567, JPL Publication JPL, 2014.

3. Tabatabaeenejad, A., M. Burgin, and M. Moghaddam, "Potential of L-band radar for retrieval of canopy and subcanopy parameters of boreal forests," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 2150-2160, Jun. 2012.
doi:10.1109/TGRS.2011.2173349

4. Kellogg, K., et al., "NASA-ISRO Synthetic Aperture Radar (NISAR) mission," 2020 IEEE Aerospace Conference, 2020.

5. Amelung, F., NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook, Jet Propulsion Laboratory (U.S.), 2019.

6. Stavros, N., P. Siqueira, M. Cosh, N. Torbick, and B. Osmanoglu, 2018 NISAR Applications Workshop: Agriculture and Soil Moisture, 2018.

7. NISAR: The NASA-ISRO SAR MissWater: Vital for Life and Civilization, available: https://nisar.jpl.nasa.gov/system/documents/files/15 NISARApplications SoilMoisture1.pdf.

8. Kim, Y. and J. J. Van Zyl, "A time-series approach to estimate soil moisture using polarimetric radar data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, 2519-2527, 2009.
doi:10.1109/TGRS.2009.2014944

9. Joseph, A. T., R. van der Velde, P. E. O’Neill, R. H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 2365-2374, 2008.
doi:10.1109/TGRS.2008.917214

10. De Roo, R. D., Y. Du, F. T. Ulaby, and M. C. Dobson, "A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 864-872, Apr. 2001.
doi:10.1109/36.917912

11. Kim, S. B., L. Tsang, J. T. Johnson, S. Huang, J. J. van Zyl, and E. G. Njoku, "Soil moisture retrieval using time-series radar observations over bare surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 1853-1863, May 2012.
doi:10.1109/TGRS.2011.2169454

12. Kim, S. B., M. Moghaddam, L. Tsang, M. Burgin, X. L. Xu, and E. G. Njoku, "Models of L-band radar backscattering coefficients over global terrain for soil moisture retrieval," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 1381-1396, Feb. 2014.
doi:10.1109/TGRS.2013.2250980

13. Mironov, V. L., M. C. Dobson, V. H. Kaupp, S. A. Komarov, and V. N. Kleshchenko, "Generalized refractive mixing dielectric model for moist soils," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, 773-785, Apr. 2004.
doi:10.1109/TGRS.2003.823288

14. Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. Elrayes, and L. K. Wu, "Microwave dielectric behavior of wet soil. 1. Empirical-models and experimental-observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, 25-34, 1985.
doi:10.1109/TGRS.1985.289497

15. Kim, S.-B., et al., "Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active- Passive satellite and evaluation at core validation sites," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 1897-1914, 2017.
doi:10.1109/TGRS.2016.2631126

16. Huang, H., et al., "Coherent model of L-band radar scattering by soybean plants: Model development, evaluation, and retrieval," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, 272-284, 2016.
doi:10.1109/JSTARS.2015.2469717

17. Liao, T. H., S. B. Kim, S. R. Tan, L. Tsang, C. X. Su, and T. J. Jackson, "Multiple scattering effects with cyclical correction in active remote sensing of vegetated surface using vector radiative transfer theory," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, 1414-1429, Apr. 2016.
doi:10.1109/JSTARS.2015.2505638

18. Lang, R. H. and J. S. Sidhu, "Electromagnetic backscattering from a layer of vegetation — A discrete approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, 62-71, 1983.
doi:10.1109/TGRS.1983.350531

19. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

20. Toure, A., K. P. B. Thomson, G. Edwards, R. J. Brown, and B. G. Brisco, "Adaptation of the mimics backscattering model to the agricultural context — Wheat and canola at L and C bands," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, 47-61, Jan. 1994.
doi:10.1109/36.285188

21. Ulaby, F. T., K. Sarabandi, K. Mcdonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, 1223-1253, Jul. 1990.
doi:10.1080/01431169008955090

22. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Vol. 26, John Wiley & Sons, 2004.

23. Huang, H., et al., "Modelling and validation of combined active and passive microwave remote sensing of agricultural vegetation at L-band," Progress In Electromagnetics Research B, Vol. 78, 91-124, 2017.
doi:10.2528/PIERB17060303

24. Lang, R. H. and N. Khadr, "Effects of backscattering enhancement on soil-moisture sensitivity," International Space Year: Space Remote Sensing, Vol. 1 and 2, 916-919, 1992.

25. Huang, S. and L. Tsang, "Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in three-dimensional simulations using a hybrid UV/PBTG/SMCG method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 4025-4035, 2012.
doi:10.1109/TGRS.2012.2189776

26. McNairn, H., et al., "The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2784-2801, 2015.
doi:10.1109/TGRS.2014.2364913

27. Huang, H., L. Tsang, E. G. Njoku, A. Colliander, T.-H. Liao, and K.-H. Ding, "Propagation and scattering by a layer of randomly distributed dielectric cylinders using Monte Carlo simulations of 3D Maxwell equations with applications in microwave interactions with vegetation," IEEE Access, Vol. 5, 11985-12003, 2017.
doi:10.1109/ACCESS.2017.2714620

28. Huang, H., L. Tsang, A. Colliander, and S. H. Yueh, "Propagation of waves in randomly distributed cylinders using three-dimensional vector cylindrical wave expansions in Foldy-Lax equations," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 214-226, 2019.
doi:10.1109/JMMCT.2019.2948022

29. Gu, W. and L. Tsang, "Vegetation effects for remote sensing of soil moisture using NMM3D full-wave simulation," IEEE Antennas and Propagation Symposium, Montreal, 2020.

30. Huang, H., et al., "Modelling and validation of combined active and passive microwave remote sensing of agricultural vegetation at L-band," Progress In Electromagnetics Research, Vol. 78, 91-124, 2017.
doi:10.2528/PIERB17060303

31. Ulaby, F. T., et al., Microwave Radar and Radiometric Remote Sensing, 2014.

32. Tsang, L., J. Kong, and K.-H. Ding, "Scattering of Electromagnetic Waves: Theories and Applications," John Wisley & Sons, ed: Inc, 2000.

33. Hensley, S., et al., "The UAVSAR instrument: Description and first results," 2008 IEEE Radar Conference, Vol. 1–4, 827-832, 2008.

34. Mladenova, I. E., T. J. Jackson, R. Bindlish, and S. Hensley, "Incidence angle normalization of radar backscatter data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, 1791-1804, Mar. 2013.
doi:10.1109/TGRS.2012.2205264

35. Deng, H., G. Farquharson, J. Sahr, Y. Goncharenko, and J. Mower, "Phase calibration of an along-track interferometric FMCW SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, 4876-4886, 2018.
doi:10.1109/TGRS.2018.2841837

36. Rowlandson, T. L., et al., "Evaluation of several calibration procedures for a portable soil moisture sensor," Journal of Hydrology, Vol. 498, 335-344, Aug. 19, 2013.
doi:10.1016/j.jhydrol.2013.05.021

37. Cosh, M. H., T. J. Jackson, R. Bindlish, J. S. Famiglietti, and D. Ryu, "Calibration of an impedance probe for estimation of surface soil water content over large regions," Journal of Hydrology, Vol. 311, 49-58, Sep. 15, 2005.
doi:10.1016/j.jhydrol.2005.01.003

38. Ulaby, F. T. and M. A. Elrayes, "Microwave dielectric spectrum of vegetation. 2. Dual-dispersion model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, 550-557, Sep. 1987.
doi:10.1109/TGRS.1987.289833