1. Dib, N., "Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search," Neural Comput. Appl., Vol. 30, No. 12, 3859-3868, 2018.
doi:10.1007/s00521-017-2971-2 Google Scholar
2. Rahman, S. U., Q. Cao, M. M. Ahmed, and H. Khalil, "Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO," J. Microwaves, Optoelectron. Electromagn., Vol. 16, No. 2, 577-591, 2017.
doi:10.1590/2179-10742017v16i2913 Google Scholar
3. Bai, J., Y. Liu, J. Cheng, P. You, and Q. Liu, "Shaped power pattern antenna array synthesis with reduction of dynamic range ratio," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2444-2447, Shanghai, China, Aug. 8–11, 2016. Google Scholar
4. Battaglia, G. M., G. G. Bellizzi, A. F. Morabito, G. Sorbello, and T. Isernia, "A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2404-2422, 2019.
doi:10.1080/09205071.2019.1683472 Google Scholar
5. Buttazzoni, G., F. Babich, F. Vatta, and M. Comisso, "Geometrical synthesis of sparse antenna arrays using compressive sensing for 5G IoT applications," Sensors, Vol. 20, No. 350, 1-16, 2020. Google Scholar
6. Rocca, P., M. Donelli, G. Oliveri, F. Viani, and A. Massa, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar," IET Radar, Sonar Navig., Vol. 7, No. 7, 747-754, 2013.
doi:10.1049/iet-rsn.2012.0300 Google Scholar
7. Slowik, A. and H. Kwasnicka, "Evolutionary algorithms and their applications to engineering problems," Neural. Comput. Appl., Vol. 32, No. 16, 12363-12379, 2020.
doi:10.1007/s00521-020-04832-8 Google Scholar
8. Singh, U. and M. Rattan, "Design of linear and circular antenna arrays using cuckoo optimization algorithm," Progress In Electromagnetics Research C, Vol. 46, 1-11, 2014.
doi:10.2528/PIERC13110902 Google Scholar
9. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
10. Saxena, P. and A. Kothari, "Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm," Int. J. Antennas Propag., Vol. 2016, 1-11, 2016.
doi:10.1155/2016/1205970 Google Scholar
11. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304 Google Scholar
12. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004 Google Scholar
13. Liang, S., Z. Fang, G. Sun, Y. Liu, G. Qu, and Y. Zhang, "Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach," IEEE Access, Vol. 8, 37664-37683, 2020.
doi:10.1109/ACCESS.2020.2976127 Google Scholar
14. Bulatsyk, O. O. and N. N. Voitovich, "Complex zeros of solutions to the synthesisproblem of irregular linear antenna array by amplitude radiation pattern," 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and AcousticWave Theory (DIPED), 14-19, 2017. Google Scholar
15. Shi, W., Y. Li, L. Zhao, and X. Liu, "Controllable sparse antenna array for adaptive beamforming," IEEE Access, Vol. 7, 6412-6423, 2019.
doi:10.1109/ACCESS.2018.2889877 Google Scholar
16. Zeni, E., M. Donelli, A. Massa, G. Boato, and R. Azaro, "Design of a prefractal monopolar antenna for 3.4–3.6 GHz Wi-Max band portable devices," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 4, 116-119, 2006. Google Scholar
17. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecol. Inform., Vol. 1, No. 4, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003 Google Scholar
18. Goswami, B. and D. Mandal, "A genetic algorithm for the level control of nulls and side lobes in linear antenna arrays," J. King Saud Univ., Comp. & Info. Sci., Vol. 25, No. 2, 117-126, 2013. Google Scholar
19. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1555-1566, 2008.
doi:10.1109/TAP.2008.923297 Google Scholar
20. Basak, A., S. Pal, S. Das, and A. Abraham, "Circular antenna array synthesis with a differential invasive weed optimization algorithm," Tenth International Conference on Hybrid Intelligent Systems, IEEE Conference, 153-158, USA, 2010. Google Scholar
21. Panduro, M. A., A. L. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," Int. J. Electron. Commun. (AEU), Vol. 60, No. 10, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006 Google Scholar
22. Mahto, S. K. and A. Choubey, "A novel hybrid IWO/WDO algorithm for nulling pattern synthesis of uniformly spaced linear and non-uniform circular array antenna," Int. J. Electron. Commun. (AEU), Vol. 70, No. 6, 750-756, 2016.
doi:10.1016/j.aeue.2016.02.013 Google Scholar
23. Sharaqa, A. and N. I. Dib, "Circular antenna array synthesis using firefly algorithm," The International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 2, 139-146, 2013.
doi:10.1002/mmce.20721 Google Scholar
24. Das, A., D. Mandal, and R. Kar, "An optimal circular antenna array design considering mutual coupling using heuristic approaches," The International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 11, 2020.
doi:10.1002/mmce.22391 Google Scholar