1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons Press, 2005.
2. Al-Janabi, M. A. and S. K. Kayhan, "Flexible vivaldi antenna based on a fractal design for RF-energy harvesting," Progress In Electromagnetics Research M, Vol. 97, 177-188, 2020.
doi:10.2528/PIERM20073003 Google Scholar
3. Shafique, K., B. A. Khawaja, M. D. Khurram, et al. "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
doi:10.1109/ACCESS.2018.2834392 Google Scholar
4. Elwi, T. A., "Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates," Nat. Sci. Rep., Vol. 9, No. 2174, 1-14, 2019. Google Scholar
5. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications," Inter. Jour. of Elect. & Comm., Vol. 101, No. 9, 1-10, 2019. Google Scholar
6. Elwi, T. A. and B. A. Ahmed, "A fractal metamaterial based printed dipoles on a nickel oxide polymer palm fiber substrate for Wi-Fi applications," Inter. Jour. of Elect. & Comm., Vol. 96, No. 23, 122-129, 2018.
doi:10.1016/j.aeue.2018.09.020 Google Scholar
7. Hatem, G. M., A. J. Salim, T. A. Elwi, et al. "Wunderlich curve fractal dipole antenna for dual-band wearable RFID applications," Jou. Eng. and App. Scie., Vol. 14, No. 4, 1093-1099, 2019.
doi:10.36478/jeasci.2019.1093.1099 Google Scholar
8. Zeng, M., Z. Li, A. S. Andrenko, Y. Zeng, and H. Z. Tan, "A compact dual-band rectenna for GSM900 and GSM1800 energy harvesting," International Journal of Antennas and Propagation, Vol. 2018, Article ID 4781465, 9 pages, 2018. Google Scholar
9. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804 Google Scholar
10. Elwi, T. A., "A slotted lotus-shaped microstrip antenna based EBG structures," Wirel. Comm. Tech., Vol. 2, No. 1, 1-24, 2018. Google Scholar
11. Imran, A. I. and T. A. Elwi, "A cylindrical wideband slotted patch antenna loaded with frequency selective surface for MRI applications," Eng. Sci. & Tech., an Int. Jou., Vol. 20, No. 3, 990-996, 2017.
doi:10.1016/j.jestch.2017.04.001 Google Scholar
12. Nguyen, N. H., T. D. Bui, and A. D. Le, "A novel wideband circularly polarized antenna for RF energy harvesting in wireless sensor nodes," International Journal of Antennas and Propagation, Vol. 2018, Article ID 1692018, 9 pages, 2018. Google Scholar
13. Anguera, J., C. Puente, E. Martínez, et al. "The fractal Hilbert monopole: A two-dimensional wire," Micr. & Opt. Tech. Lett., Vol. 36, No. 2, 102-104, 2003.
doi:10.1002/mop.10687 Google Scholar
14. Gala, D., J. Soler, C. Puente, et al. "Miniature microstrip patch antenna loaded with a space-filling line based on the fractal Hilbert curve," Micr. & Opt. Tech. Lett., Vol. 38, No. 4, 311-312, 2003.
doi:10.1002/mop.11046 Google Scholar
15. Azad, M. Z. and M. Ali, "A miniaturized Hilbert PIFA for dual-band mobile wireless applications," IEEE Ant. & Wire. Prop. Lett., Vol. 4, No. 3, 59-62, 2005.
doi:10.1109/LAWP.2005.844128 Google Scholar
16. Azaro, R., F. Viani, L. Lizzi, et al. "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Ant. & Wire. Prop. Lett., Vol. 8, No. 5, 177-180, 2009.
doi:10.1109/LAWP.2008.2001428 Google Scholar
17. Puente, C., E. Rozan, and J. Anguera, "Space-filling miniature antennas,", US Pat. 2000, 7,202,822. Google Scholar
18. Mathur, R. and S. Dwari, "Compact planar reconfigurable UWB-MIMO antenna with on-demand worldwide interoperability for microwave access/wireless local area network rejection," IET Microw. Antennas Propag., Vol. 13, 1684-1689, 2019.
doi:10.1049/iet-map.2018.6048 Google Scholar
19. Elwi, T. A., Z. A. Al-Hussain, and O. Tawfeeq, "A Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Micr., Ant. & Prop., Vol. 10, No. 2, 1-8, 2019. Google Scholar
20. Vaccaro, S., C. Pereira, J. R. Mosig, et al. "In-flight experiment for combined planar antennas and solar cells (SOLANT)," IET Micr., Ant. & Prop., Vol. 3, No. 8, 1279-1287, 2009.
doi:10.1049/iet-map.2008.0410 Google Scholar
21. Vaccaro, S., P. Torres, J. R. Mosig, et al. "Stainless steel slot antenna with integrated solar cells," Electron. Lett., Vol. 36, No. 25, 2059-2060, 2000.
doi:10.1049/el:20001467 Google Scholar
22. Al-Adhami, Y. and E. Ercelebi, "A plasmonic monopole antenna array on flexible photovoltaic panels for further use of the green energy harvesting," Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018.
doi:10.2528/PIERM18032104 Google Scholar
23. CSTMWS, http://www.cst.com, April 2019.
24. Vaccaro, S., J. R. Mosig, and P. Maagt, "Two advanced solar antenna ``SOLANT'' designs for satellite and terrestrial communications," IEEE Tran. on Ant. & Prop., Vol. 51, No. 8, 110-116, 2003. Google Scholar
25. Al-Adhami, Y. and E. Ercelebi, "Plasmonic metamaterial dipole antenna array circuitry based on flexible solar cell panel for selfpowered wireless systems," Micr. and Opt. Tech. Lett., Vol. 59, No. 9, 2365-2371, 2017.
doi:10.1002/mop.30747 Google Scholar
26. HFSS, http://www.ansoft.com, April 2019.
27. https://www.powercastco.com/documentation/p21xxcsr-evb-datasheet/.
28. Elwi, T. A., D. A. Jassim, and H. H. Mohammed, "Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting," Int. J. Commun. Syst., Vol. 1, No. e4305, 1-15, 2020. Google Scholar
29. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604 Google Scholar