1. Koenig, S., D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, "Wireless sub-THz communication system with high data rate," Nature Photonics, Vol. 7, No. 12, 977-981, 2013.
doi:10.1038/nphoton.2013.275 Google Scholar
2. Liu, D., U. Pfeiffer, J. Grzyb, and B. Gaucher, Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits, John Wiley & Sons, 2009.
doi:10.1002/9780470742969
3. Grischkowsky, D., S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, Vol. 7, No. 10, 2006-2015, 1990.
doi:10.1364/JOSAB.7.002006 Google Scholar
4. Kazemi, A. H. and A. Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Optik, Vol. 142, 475-482, 2017.
doi:10.1016/j.ijleo.2017.05.113 Google Scholar
5. Sadeghzadeh, R. A. and F. B. Zarrabi, "Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna," Optik, Vol. 127, No. 13, 5181-5185, 2016.
doi:10.1016/j.ijleo.2016.02.072 Google Scholar
6. Li, B., Y. Long, H. Liu, and C. Zhao, "Research progress on Terahertz technology and its application in agriculture," Transactions of the Chinese Society of Agricultural Engineering, Vol. 34, No. 2, 1-9, 2018. Google Scholar
7. Deb, S., A. Ganguly, P. P. Pande, B. Belzer, and D. Heo, "Wireless NoC as interconnection backbone for multicore chips: Promises and challenges," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 2, No. 2, 228-239, 2012.
doi:10.1109/JETCAS.2012.2193835 Google Scholar
8. Nishizawa, J. I., T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura, "THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator," Optics Communications, Vol. 244, No. 1–6, 469-474, 2005.
doi:10.1016/j.optcom.2004.09.064 Google Scholar
9. Naftaly, M., A. P. Foulds, R. E. Miles, and A. G. Davies, "Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties," International Journal of Infrared and Millimeter Waves, Vol. 26, No. 1, 55-64, 2005.
doi:10.1007/s10762-004-2033-6 Google Scholar
10. Sirisha, M. and M. Arun, "Dual-band reconfigurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications," IET Micr., A. & Prop., Vol. 11, 2104-2108, 2017. Google Scholar
11. Seyedsharbaty, M. M. and R. A. Sadeghzadeh, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," Optical and Quantum Electronics, Vol. 49, No. 6, 221, 2017.
doi:10.1007/s11082-017-1052-1 Google Scholar
12. McIntosh, A. I., B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, "Terahertz spectroscopy: A powerful new tool for the chemical sciences," Chemical Society Reviews, Vol. 41, No. 6, 2072-2082, 2012.
doi:10.1039/C1CS15277G Google Scholar
13. Chernomyrdin, N. V., M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, and S. O. Yurchenko, "Wide-aperture aspherical lens for high-resolution terahertz imaging," Review of Scientific Instruments, Vol. 88, No. 1, 014703, 2017.
doi:10.1063/1.4973764 Google Scholar
14. Dhillon, S. S., M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, and E. Castro-Camus, "The 2017 terahertz science and technology roadmap," Journal of Physics D: Applied Physics, Vol. 50, No. 4, 043001, 2017.
doi:10.1088/1361-6463/50/4/043001 Google Scholar
15. Kleine-Ostmann, T. and T. Nagatsuma, "A review on terahertz communications research," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, No. 2, 143-171, 2011.
doi:10.1007/s10762-010-9758-1 Google Scholar
16. Pourahmadazar, J. and T. A. Denidni, "Millimeter-wave planar antenna on flexible polyethylene terephthalate substrate with water base silver nanoparticles conductive ink," Microwave and Optical Technology Letters, Vol. 60, No. 4, 887-891, 2018.
doi:10.1002/mop.31079 Google Scholar
17. Chen, H. T., W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597-600, 2006.
doi:10.1038/nature05343 Google Scholar
18. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004.
doi:10.1126/science.1102896 Google Scholar
19. Wang, X., L. Zhi, and K. Mullen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, Vol. 8, No. 1, 323-327, 2008.
doi:10.1021/nl072838r Google Scholar
20. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849 Google Scholar
21. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691 Google Scholar
22. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Physical Review B, Vol. 80, No. 24, 245435, 2009.
doi:10.1103/PhysRevB.80.245435 Google Scholar
23. Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, Vol. 45, No. 7, 1558-1565, 2007.
doi:10.1016/j.carbon.2007.02.034 Google Scholar
24. Tung, V. C., M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, Vol. 4, No. 1, 25, 2009.
doi:10.1038/nnano.2008.329 Google Scholar
25. Emtsev, K. V., A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, and E. Rotenberg, "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nature Materials, Vol. 8, No. 3, 203-207, 2009.
doi:10.1038/nmat2382 Google Scholar
26. Berger, C., Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B, Vol. 108, No. 52, 19912-19916, 2004.
doi:10.1021/jp040650f Google Scholar
27. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004.
doi:10.1126/science.1102896 Google Scholar
28. Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, Vol. 457, No. 7230, 706-710, 2009.
doi:10.1038/nature07719 Google Scholar
29. Obraztsov, A. N., E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, Vol. 45, No. 10, 2017-2021, 2007.
doi:10.1016/j.carbon.2007.05.028 Google Scholar
30. Reina, A., X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Letters, Vol. 9, No. 1, 30-35, 2009.
doi:10.1021/nl801827v Google Scholar
31. Chae, S. J., F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park, and C. W. Yang, "Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation," Advanced Materials, Vol. 21, No. 22, 2328-2333, 2009.
doi:10.1002/adma.200803016 Google Scholar
32. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, and S. K. Banerjee, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, No. 5932, 1312-1314, 2009.
doi:10.1126/science.1171245 Google Scholar
33. Reina, A., S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, "Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces," Nano Research, Vol. 2, No. 6, 509-516, 2009.
doi:10.1007/s12274-009-9059-y Google Scholar
34. De Parga, A. V., F. Calleja, B. M. C. G. Borca, M. C. G. Passeggi, Jr., J. J. Hinarejos, F. Guinea, and R. Miranda, "Periodically rippled graphene: Growth and spatially resolved electronic structure," Physical Review Letters, Vol. 100, No. 5, 056807, 2008.
doi:10.1103/PhysRevLett.100.056807 Google Scholar
35. Abadal, S., E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky, "Graphene-enabled wireless communication for massive multicore architectures," IEEE Communications Magazine, Vol. 51, No. 11, 137-143, 2013.
doi:10.1109/MCOM.2013.6658665 Google Scholar
36. Akyildiz, I. F., J. M. Jornet, and C. Han, "TeraNets: Ultra-broadband communication networks in the terahertz band," IEEE Wireless Communications, Vol. 21, No. 4, 130-135, 2014.
doi:10.1109/MWC.2014.6882305 Google Scholar
37. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
38. Hosseininejad, S. E., N. Komjani, and M. T. Noghani, "A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides," IEEE Transactions on Nanotechnology, Vol. 14, No. 5, 829-836, 2015.
doi:10.1109/TNANO.2015.2449903 Google Scholar
39. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and A. R. Plana, "Terahertz antenna based on graphene," Journal of Applied Physics, Vol. 107, No. 10, 104313, 2010.
doi:10.1063/1.3427536 Google Scholar
40. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691 Google Scholar
41. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Physical Review B, Vol. 80, No. 24, 245435, 2009.
doi:10.1103/PhysRevB.80.245435 Google Scholar
42. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures — Fundamentals and Applications, Vol. 10, No. 4, 353-358, 2012.
doi:10.1016/j.photonics.2012.05.011 Google Scholar
43. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, No. 21, 214102, 2012.
doi:10.1063/1.4767338 Google Scholar
44. Wang, X. C., W. S. Zhao, J. Hu, and W. Y. Yin, "Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface," IEEE Transactions on Nanotechnology, Vol. 14, No. 1, 62-69, 2014.
doi:10.1109/TNANO.2014.2365205 Google Scholar
45. Llatser, I., C. Kremers, and D. N. Chigrin, "Radiation characteristics of tunable graphenes in the terahertz band," 6th European Conference on Antennas and Propagation (EUCAP), 194-198, 2011. Google Scholar
46. Amanatiadis, S. A. and N. V. Kantartzis, "Design and analysis of a gate-tunable graphene-based nanoantenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 4038-4041, 2013. Google Scholar
47. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Physica E: Low-dimensional Systems and Nanostructures, Vol. 66, 67-73, 2015.
doi:10.1016/j.physe.2014.09.023 Google Scholar
48. Zhang, X., G. Auton, E. Hill, and Z. Hu, "Graphene THz ultra wideband CPW-fed monopole antenna," 1st IET Colloquium on Antennas, Wireless and Electromagnetics, 1-16, IET, 2013. Google Scholar
49. Kempa, K., J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, "Carbon nanotubes as optical antennae," Advanced Materials, Vol. 19, No. 3, 421-426, 2007.
doi:10.1002/adma.200601187 Google Scholar
50. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865 Google Scholar
51. Llatser Martı, I., C. Kremers, D. N. Chigrin, J. M. Jornet Montana, M. C. Lemme, A. Cabellos Aparicio, and E. J. Alarcon Cot, "Radiation characteristics of tunable graphennas in the terahertz band," Radioengineering, Vol. 21, No. 4, 1-8, 2012. Google Scholar
52. Rouhi, N., S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, "Terahertz graphene optics," Nano Research, Vol. 5, No. 10, 667-678, 2012.
doi:10.1007/s12274-012-0251-0 Google Scholar
53. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
54. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1385-1393, 2016.
doi:10.1109/TAP.2016.2521881 Google Scholar
55. Han, M. Y., B. Ozyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical Review Letters, Vol. 98, No. 20, 206805, 2007.
doi:10.1103/PhysRevLett.98.206805 Google Scholar
56. Dubinov, A. A., V. Y. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, "Terahertz surface plasmons in optically pumped graphene structures," Journal of Physics: Condensed Matter, Vol. 2, No. 14, 145302, 2011.
doi:10.1088/0953-8984/23/14/145302 Google Scholar
57. Jadidi, M. M., A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Mu, "Tunable terahertz hybrid metal-graphene plasmons," Nano Letters, Vol. 15, No. 10, 7099-7104, 2015.
doi:10.1021/acs.nanolett.5b03191 Google Scholar