Vol. 97
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-25
Matrix Splitting Technique for Solving Electromagnetic Scattering Problems Over a Wide Angle by Compressive Sensing
By
Progress In Electromagnetics Research Letters, Vol. 97, 45-50, 2021
Abstract
By combining the method of moments and the compressive sensing theory, a rapid scheme for analyzing the electromagnetic scattering problems over a wide incident angle has been developed, by which the calculation times of traditional method of moments can be decreased efficiently. To further reduce the calculation times, the matrix splitting technique is proposed to establish a new scheme in this paper. The basic principle is elaborated in detail, and the effectiveness of the new scheme is verified by numerical results.
Citation
Qi Qi, Xin-Yuan Cao, Ming Sheng Chen, Zhixiang Huang, and Xian-Liang Wu, "Matrix Splitting Technique for Solving Electromagnetic Scattering Problems Over a Wide Angle by Compressive Sensing," Progress In Electromagnetics Research Letters, Vol. 97, 45-50, 2021.
doi:10.2528/PIERL21030404
References

1. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.

2. Reddy, C. J. and M. D. Deshpande, "Fast RCS computationover a frequency band using method of moments inconjunction with asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579

3. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

4. Baraniuk, R., "Compressive sensing," IEEE Signal Processing Magazine, Vol. 24, No. 4, 118-121, 2007.
doi:10.1109/MSP.2007.4286571

5. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

6. Chai, S. R. and L. X. Guo, "Compressive sensing for monostatic scattering from 3D NURBS geometries," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3545-3553, 2016.
doi:10.1109/TAP.2016.2580166

7. Wang, G. H. and Y. F. Sun, "A hybrid approach for fast computation of multiple incident angles electromagnetic scattering problems with compressive sensing and adaptive cross approximation," International Journal of Antennas and Propagation, Vol. 2016, 1-6, 2016.

8. Carin, L., D. Liu, W. Lin, and B. Guo, "Compressive sensing for multi-static scattering analysis," Journal of Computational Physics, Vol. 228, No. 9, 3464-3477, 2016.
doi:10.1016/j.jcp.2009.01.033

9. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

10. Cao, X.-Y., M. S. Chen, M. Kong, L. Zhang, X.-L. Wu, X. Liu, L. Cheng, Q. Qi, and B. Chen, "Direct application of excitation matrix as sparse transform for analysis of wide angle EM scattering problems by compressive sensing," Progress In Electromagnetics Research Letters, Vol. 65, 131-137, 2017.
doi:10.2528/PIERL16112802