Vol. 92
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-03-19
Capacitance Matrix Revisited
By
Progress In Electromagnetics Research B, Vol. 92, 1-18, 2021
Abstract
The capacitance matrix relates potentials and charges on a system of conductors. We review and rigorously generalize its properties, block-diagonal structure and inequalities, deduced from the geometry of system of conductors and analytic properties of the permittivity tensor. Furthermore, we discuss alternative choices of regularization of the capacitance matrix, which allow us to find the charge exchanged between the conductors having been brought to an equal potential. Finally, we discuss the tacit approximations used in standard treatments of the electric circuits, demonstrating how the formulae for the capacitance of capacitors connected in parallel and series may be recovered from the capacitance matrix.
Citation
Ivica Smolić, and Bruno Klajn, "Capacitance Matrix Revisited," Progress In Electromagnetics Research B, Vol. 92, 1-18, 2021.
doi:10.2528/PIERB21011501
References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 1873, Dover Publications, 2007.

2. Smythe, W., Static and Dynamic Electricity, Hemisphere Pub. Corp, 1989.

3. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, 1984.

4. Jackson, J., Classical Electrodynamics, Wiley, 1999.

5. Durand, E., Électrostatique et magnétostatique, Masson et Cie, 1953.

6. Chirgwin, B., C. Plumpton, and C. W. Kilmister, Elementary Electromagnetic Theory. Volume 1: Steady Electric Fields and Currents, Pergamon Press, 1971.

7. Schwartz, M., Principles of Electrodynamics, Dover Publications, 1987.

8. Wangsness, R., Electromagnetic Fields, Wiley, 1986.

9. Nayfeh, M. H. and M. Brussel, Electricity and Magnetism, Dover Publications, Inc., 2015.

10. Ohanian, H., Classical Electrodynamics, Infinity Science Press, 2007.

11. Greiner, W., Classical Electrodynamics, Springer, 1998.
doi:10.1007/978-1-4612-0587-6

12. Popović, Z. and B. D. Popović, Introductory Electromagnetics, Prentice Hall, 2000.

13. Müller-Kirsten, H. J. W., Electrodynamics: An Introduction Including Quantum Effects, World Scientific, 2004.
doi:10.1142/5510

14. Vanderlinde, J., Classical Electromagnetic Theory, Kluwer Academic Publishers, 2004.

15. Zangwill, A., Modern Electrodynamics, Cambridge University Press, 2013.

16. Garg, A., Classical Electromagnetism in a Nutshell, Princeton University Press, 2012.

17. Toptygin, I. N., Electromagnetic Phenomena in Matter: Statistical and Quantum Approaches, Wiley-VCH, 2015.

18. Schwinger, J., L. L. DeRaad, K. A. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Perseus Books, 1998.

19. Herrera, W. J. and R. A. Diaz, "The geometrical nature and some properties of the capacitance coefficients based on Laplace's equation," Am. J. Phys., Vol. 76, 55-59, 2008.
doi:10.1119/1.2800355

20. Diaz, R. A. and W. J. Herrera, "The positivity and other properties of the matrix of capacitance: Physical and mathematical implications," J. Electrostat., Vol. 69, 587-595, 2011.
doi:10.1016/j.elstat.2011.08.001

21. Lee, J. M., Introduction to Smooth Manifolds, Springer, 2003.
doi:10.1007/978-0-387-21752-9

22. Federer, H., Geometric Measure Theory, Springer, 1996.
doi:10.1007/978-3-642-62010-2

23. Morgan, F., Geometric Measure Theory: A Beginner's Guide, Elsevier Ltd., 2016.

24. Guillemin, V. and V. Pollack, Differential Topology, Prentice-Hall, 1974.

25. Lima, E. L., "The Jordan-Brouwer separation theorem for smooth hypersurfaces," Amer. Math. Monthly, Vol. 95, 39-42, 1988.
doi:10.1080/00029890.1988.11971963

26. McGrath, P., "On the smooth jordan brouwer separation theorem," Amer. Math. Monthly, Vol. 123, 292-295, 2016.
doi:10.4169/amer.math.monthly.123.3.292

27. Perles, M. A., H. Martini, and Y. S. Kupitz, "A Jordan-Brouwer separation theorem for polyhedral pseudomanifolds," Disrete Comput. Geom., Vol. 42, 277-304, 2009.
doi:10.1007/s00454-009-9192-0

28. Gilbarg, D. and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
doi:10.1007/978-3-642-61798-0

29. Kittel, C., Elementary Statistical Physics, Dover Publications, 2004.

30. Batygin, V. and I. N. Toptygin, Problems in Electrodynamics, Academic Press, 1978.

31. Love, R. R., "The electrostatic field of two equal circular co-axial conducting disks," Q. J. Mech. Appl. Math., Vol. 2, No. 4, 428-451, 1949.
doi:10.1093/qjmam/2.4.428

32. Hutson, V., "The circular plate condenser at small separations," Math. Proc. Camb. Philos. Soc., Vol. 59, 211-224, 1963.
doi:10.1017/S0305004100002152

33. Rao, T. V., "Capacity of the circular plate condenser: Analytical solutions for large gaps between the plates," J. Phys. A, Vol. 38, No. 46, 10037-10056, 2005.
doi:10.1088/0305-4470/38/46/010

34. Paffuti, G., E. Cataldo, A. Di Lieto, and F. Maccarrone, "Circular plate capacitor with different discs," Proc. R. Soc. A, Vol. 472, No. 2194, 20160574, 2016.
doi:10.1098/rspa.2016.0574

35. Paffuti, G., "Numerical and analytical results for the two discs capacitor problem," Proc. R. Soc. A, Vol. 73, No. 2197, 20160792, 2017.
doi:10.1098/rspa.2016.0792

36. Erma, V. A., "Perturbation approach to the electrostatic problem for irregularly shaped conductors," J. Math. Phys., Vol. 4, 1517-1526, 1963.
doi:10.1063/1.1703933

37. Pólya, G. and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951.
doi:10.1515/9781400882663

38. Sloggett, G. J., N. G. Barton, and S. J. Spencer, "Fringing fields in disc capacitors," J. Phys. A, Vol. 19, No. 14, 2725-2736, 1986.
doi:10.1088/0305-4470/19/14/012

39. James, M. C. and J. R. Solheim, "The effect of trapped charge on series capacitors," Am. J. Phys., Vol. 83, No. 7, 621-627, 2015.
doi:10.1119/1.4916888

40. Olyslager, F., Electromagnetic Waveguides and Transmission Lines, Oxford University Press, 1999.

41. Bhunia, S., S. Mukhopadhyay, and ed., Low-power Variation-tolerant Design in Nanometer Silicon, Springer, 2011.
doi:10.1007/978-1-4419-7418-1

42. Cardoso, D. B., E. T. de Andrade, R. A. A. Calderón, M. H. S. Rabelo, C. de A. Dias, and I. Á. Lemos, "Determination of thermal properties of coffee beans at different degrees of roasting," Coffee Science, Vol. 13, No. 4, 498-509, 2018.
doi:10.25186/cs.v13i4.1491

43. Zaremba, S., "Sur le principe de dirichlet," Acta Math., Vol. 34, 293-316, 1911.
doi:10.1007/BF02393130

44. Lebesgue, H., "Sur des cas d'impossibilité du problème de Dirichlet ordinaire," C.R. Séances Soc. Math. France, 17, 1913.

45. Armitage, D. H. and S. J. Gardiner, Classical Potential Theory, Springer, 2001.
doi:10.1007/978-1-4471-0233-5

46. Van Bladel, J. G., Electromagnetic Fields, Wiley-Interscience John Wiley, 2007.
doi:10.1002/047012458X

47. Salsa, S., Partial Differential Equations in Action: From Modelling to Theory, Springer, 2015.
doi:10.1007/978-3-319-15093-2_2

48. Evans, L., Partial Differential Equations, American Mathematical Society, 2010.

49. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.
doi:10.1137/1.9781611972030

50. Serrin, J. and H. F. Weinberger, "Isolated singularities of solutions of linear elliptic equations," Am. J. Math., Vol. 88, 258-272, 1966.
doi:10.2307/2373060

51. Mitrea, D. and I. Mitrea, "On the Besov regularity of conformal maps and layer potentials on nonsmooth domains," J. Funct. Anal., Vol. 201, No. 2, 380-429, 2003.
doi:10.1016/S0022-1236(03)00086-7

52. Meyers, N. and J. Serrin, "The exterior dirichlet problem for second order elliptic partial differential equations," J. Math. Mech., Vol. 9, 513-538, 1960.

53. Moser, J., "On Harnack's theorem for elliptic differential equations," Commun. Pure Appl. Math., Vol. 14, 577-591, 1961.
doi:10.1002/cpa.3160140329

54. Simon, B., Harmonic Analysis. A Comprehensive Course in Analysis, Part 3, American Mathematical Society, 2015.

55. Han, Q. and F. Lin, Elliptic Partial Differential Equations, American Mathematical Society, 2011.

56. Morrey, Jr., C. B. and L. Nirenberg, "On the analyticity of the solutions of linear elliptic systems of partial differential equations," Commun. Pure Appl. Math., Vol. 10, 271-290, 1957.
doi:10.1002/cpa.3160100204

57. Morrey, Jr., C. B., "On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations: Part I. Analyticity in the interior," Am. J. Math., Vol. 10, 198-218, 1958.
doi:10.2307/2372830

58. Morrey, C., Multiple Integrals in the Calculus of Variations, Springer, 2008.