Vol. 111
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-26
On the Performance of Reconfigurable Intelligent Surface Aided Power Line Communication System Under Different Relay Transmission Protocols
By
Progress In Electromagnetics Research C, Vol. 111, 119-133, 2021
Abstract
In this paper, the performance analysis of a dual-hop reconfigurable intelligent surface (RIS)-aided power line communication (PLC) system is presented under different relay transmission protocols. The relay is assumed to be decode-and-forward (DF) or amplify-and-forward (AF) relaying protocol. It is also assumed that the RIS link is subjected to Rayleigh fading while the PLC link undergoes Log-normal fading with the influence of additive background and impulsive noise. To evaluate the system performance, the end-to-end cumulative distribution function for both relaying protocols are derived. Based on these, the analysis expressions for the system outage probability and average bit error rate (ABER) are derived under DF and AF relaying protocols. To gain further insight about the system performance, the asymptotic analysis for the derived expressions is obtained at high signal-to-noise ratio regime. The findings illustrate the significant impact of the number of RIS elements and impulsive noise on the overall system performance. In addition, the accuracy of the analytical results is justified through Monte-Carlo simulations.
Citation
Kehinde Oluwasesan Odeyemi, Pius Adewale Owolawi, and Oladayo O. Olakanmi, "On the Performance of Reconfigurable Intelligent Surface Aided Power Line Communication System Under Different Relay Transmission Protocols," Progress In Electromagnetics Research C, Vol. 111, 119-133, 2021.
doi:10.2528/PIERC21020803
References

1. Gheth, W., K. M. Rabie, B. Adebisi, M. Ijaz, and G. Harris, "Performance analysis of integrated power-line/visible-light communication systems with AF relaying," 2018 IEEE Global Communications Conference (GLOBECOM), 1-6, IEEE, 2018.

2. Rabie, K. M., B. Adebisi, H. Gacanin, and S. Yarkan, "Energy-per-bit performance analysis of relay-assisted power line communication systems," IEEE Transactions on Green Communications Networking, Vol. 2, No. 2, 360-368, 2018.
doi:10.1109/TGCN.2018.2794613

3. Gheth, W., K. M. Rabie, B. Adebisi, M. Ijaz, G. Harris, and A. Alfitouri, "Hybrid powerline/wireless communication systems for indoor applications," 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 1-6, IEEE, 2018.

4. Yang, L., X. Yan, S. Li, D. B. da Costa, and M.-S. Alouini, "Performance analysis of dual-hop mixed PLC/RF communication systems," arXiv preprint arXiv:.09051, 2020.

5. Anastasiadou, D. and T. Antonakopoulos, "Multipath characterization of indoor power-line networks," IEEE Transactions on Power Delivery, Vol. 20, No. 1, 90-99, 2005.
doi:10.1109/TPWRD.2004.832373

6. Rozman, M., A. Ikpehai, B. Adebisi, and K. M. Rabie, "Channel characterisation of cooperative relaying power line communication systems," 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 1-5, IEEE, 2016.

7. Makarfi, A. U., R. Kharel, K. M. Rabie, O. Kaiwartya, X. Li, and D.-T. Do, "Reconfigurable intelligent surfaces based cognitive radio networks," arXiv preprint arXiv:.10946, 2020.

8. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "Performance analysis of reconfigurable intelligent surface assisted underwater optical communication system," Progress In Electromagnetics Research, Vol. 98, 101-111, 2020.
doi:10.2528/PIERM20101203

9. Yang, L., Y. Yang, D. B. da Costa, and I. Trigui, "Performance analysis of an interference-limited RIS-aided network," arXiv preprint arXiv:.07479, 2020.

10. Tang, Z., T. Hou, Y. Liu, J. Zhang, and L. Hanzo, "Physical layer security of intelligent reflective surface aided NOMA networks," arXiv preprint arXiv:.03417, 2020.

11. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "Reconfigurable intelligent surface assisted mobile network with randomly moving user over Fisher-Snedecor fading channel," Physical Communication, Vol. 43, 101186, 2020.
doi:10.1016/j.phycom.2020.101186

12. Basar, E., M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," IEEE Access, Vol. 7, 116753-116773, 2019.
doi:10.1109/ACCESS.2019.2935192

13. Basar, E., "Transmission through large intelligent surfaces: A new frontier in wireless communications," 2019 European Conference on Networks and Communications (EuCNC), 112-117, IEEE, 2019.
doi:10.1109/EuCNC.2019.8801961

14. Dubey, A. and R. K. Mallik, "PLC system performance with AF relaying," IEEE Transactions on Communications, Vol. 63, No. 6, 2337-2345, 2015.
doi:10.1109/TCOMM.2015.2427171

15. Ahiadormey, R. K., P. Anokye, H.-S. Jo, and K.-J. Lee, "Performance analysis of two-way relaying in cooperative power line communications," IEEE Access, Vol. 7, 97264-97280, 2019.
doi:10.1109/ACCESS.2019.2926750

16. Passerini, F. and A. M. Tonello, "Analog full-duplex amplify-and-forward relay for power line communication networks," IEEE Communications Letters, Vol. 23, No. 4, 676-679, 2019.
doi:10.1109/LCOMM.2019.2901480

17. Salem, A., K. M. Rabie, K. A. Hamdi, E. Alsusa, and A. M. Tonello, "Physical layer security of cooperative relaying power-line communication systems," 2016 International Symposium on Power Line Communications and Its Applications (ISPLC), 185-189, IEEE, 2016.
doi:10.1109/ISPLC.2016.7476261

18. Yang, L., W. Guo, and I. S. Ansari, "Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface," IEEE Communications Letters, Vol. 24, No. 7, 1558-1562, 2020.
doi:10.1109/LCOMM.2020.2986002

19. Yang, L., W. Guo, D. B. da Costa, and M.-S. Alouini, "Free-space optical communication with reconfigurable intelligent surfaces," arXiv preprint arXiv:.00547, 2020.

20. Yang, L., F. Meng, J. Zhang, M. O. Hasna, and M. Di Renzo, "On the performance of RIS-assisted dual-hop UAV communication systems," IEEE Transactions on Vehicular Technology, Vol. 69, No. 9, 10385-10390, 2020.
doi:10.1109/TVT.2020.3004598

21. Jani, M., P. Garg, and A. Gupta, "Performance analysis of a mixed cooperative PLC-VLC system for indoor communication systems," IEEE Systems Journal, Vol. 14, No. 1, 469-476, 2019.
doi:10.1109/JSYST.2019.2911717

22. Jani, M., P. Gargt, and A. Gupta, "Modeling and outage analysis of DF relay assisted mixed PLC-VLC system," 2018 Twenty Fourth National Conference on Communications (NCC), 1-5, IEEE, 2018.

23. Prudnikov, A., Y. A. Brychkov, and O. Marichev, Integrals and series Volume 3: More Special Functions, Taylor and Francis, 2003.

24. Proakis, J. G. and M. J. I. Salehi, Digital Communications, McGraw-Hill, 1995.

25. Yang, L. and Y. Yuan, "Secrecy outage probability analysis for RIS-assisted NOMA systems," Electronics Letters, Vol. 56, No. 23, 1254-1256, 2020.
doi:10.1049/el.2020.2284

26. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2014.

27. Adamchik, V. and O. Marichev, "The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system," Proceedings of the International Symposium on Symbolic and Algebraic Computation, 212-224, 1990.

28. Li, S., L. Yang, and D. B. da Costa, "Performance analysis of UAV-based mixed RF-UWOC transmission systems," arXiv preprint arXiv:.09062, 2020.

29. Yang, L., M.-S. Alouini, and I. S. Ansari, "Asymptotic performance analysis of two-way relaying FSO networks with nonzero boresight pointing errors over double-generalized gamma fading channels," IEEE Transactions on Vehicular Technology, Vol. 67, No. 8, 7800-7805, 2018.
doi:10.1109/TVT.2018.2833871