1. Lee, C.-K., J. McGhee, C. Tsipogiannis, S. Zhang, D. Cadman, A. Goulas, T. Whittaker, R. Gheisari, D. Engstrom, and J. (Yiannis) Var, "Evaluation of microwave characterization methods for additively manufactured materials," Designs, Vol. 3, 47, 2019.
doi:10.3390/designs3040047 Google Scholar
2. Takach, A. A., F. M. Mbango, F. Ndagijimana, M. Al-Husseini, and J. Jomaah, "Two-line technique for dielectric material characterization with application in 3D-printing filament electrical parameters extraction," Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019.
doi:10.2528/PIERM19071702 Google Scholar
3. Lountala, M. G., F. M. Mbango, F. Ndagijimana, and D. Lilonga-Boyenga, "Movable short-circuit technique to extract the relative permittivity of materials from a coaxial cell," Journal of Measurements in Engineering, Vol. 7, 183-194, 2019.
doi:10.21595/jme.2019.20925 Google Scholar
4. Tiwari, N. K. and M. J. Akhtar, "Partially filled substrate integrated waveguide-based microwave technique for broadband dielectric characterization," IEEE Transactions on Instrumentation and Measurement, Vol. 68, 2907-2915, 2019.
doi:10.1109/TIM.2018.2871807 Google Scholar
5. Tosaka, T., K. Fujii, K. Fukunaga, and A. Kasamatsu, "Development of complex relative permittivity measurement system based on free-space in 220–330-GHz range," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 102-109, 2015. Google Scholar
6. Severo, S. L. S., A. A. A. De Salles, B. Nervis, and B. K. Zanini, "Non-resonant permittivity measurement methods," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, 297-311, 2017.
doi:10.1590/2179-10742017v16i1890 Google Scholar
7. Materials, L., J. Baker-jarvis, R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, 571-577, 1998.
doi:10.1109/94.708274 Google Scholar
8. Moukanda Mbango, F., J. E. D. M’Pemba, F. Ndagijimana, and B. M’Passi-Mabiala, "Use of two open-terminated coaxial transmission-lines technique to extract the material relative intrinsic parameters," IEEE Access, Vol. 8, 138682-138689, 2020.
doi:10.1109/ACCESS.2020.3012431 Google Scholar
9. You, K. Y., "Effects of sample thickness for dielectric measurements using transmission phase-shift method," International Journal of Advances in Microwave Technology (IJAMT), Vol. 1, 64-67, 2016. Google Scholar
10. Jebbor, N., S. Bri, and M. C. ElBoubakraoui, "Effective complex permittivity determination and microwave absorption properties of a granular dielectric composite material," Procedia Computer Science, Vol. 151, 1022-1027, 2019.
doi:10.1016/j.procs.2019.04.144 Google Scholar
11. Costa, F., M. Borgese, M. Degiorgi, and A. Monorchio, "Electromagnetic characterisation of materials by using Transmission/Reflection (T/R) devices," Electronics (Switzerland), Vol. 6, 2017. Google Scholar
12. Goncalves, F. J. F., A. G. M. Pinto, R. C. Mesquita, E. J. Silva, and A. Brancaccio, "Free-space materials characterization by reflection and transmission measurements using frequency-by-frequency and multi-frequency algorithms," Electronics, Vol. 7, 3-6, 2018.
doi:10.3390/electronics7100260 Google Scholar
13. Bronckers, L. A. and A. B. Smolders, "Broadband material characterization method using a CPW with a novel calibration technique," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1763-1766, 2016.
doi:10.1109/LAWP.2016.2535115 Google Scholar
14. Liao, X. and T. S. Wiedmann, "Characterization of pharmaceutical solids by scanning probe microscopy," Journal of Pharmaceutical Sciences, Vol. 93, 2250-2258, 2004.
doi:10.1002/jps.20139 Google Scholar
15. Pometcu, L., A. Sharaiha, R. Benzerga, R. D. Tamas, and P. Pouliguen, "Method for material characterization in a non-anechoic environment," Applied Physics Letters, Vol. 108, 2-6, 2016.
doi:10.1063/1.4947100 Google Scholar
16. Hyde, M. W., J. W. Stewart, M. J. Havrilla, W. P. Baker, E. J. Rothwell, and D. P. Nyquist, "Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution," Radio Science, Vol. 44, 1-13, 2009.
doi:10.1029/2008RS003937 Google Scholar
17. Antosiewicz, T. J., P. Wrobel, and T. Szoplik, "Magnetic probe for material characterization at optical frequencies," Metamaterials VI, Vol. 8070, 80700E, 2011.
doi:10.1117/12.886828 Google Scholar
18. Campos, D. C., J. C. A. Santos, and L. E. P. Borges, "Investigation of thermal effects in coaxial probe method and dielectric characterization of glycerol up to 140◦C," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, 1-17, 2019.
doi:10.1590/2179-10742019v18i11388 Google Scholar
19. Liu, W., H. Sun, and L. Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensors (Switzerland), Vol. 18, 18-27, 2018. Google Scholar
20. Bao, X., S. Liu, I. Ocket, J. Bao, D. Schreurs, S. Zhang, C. Cheng, K. Feng, and B. Nauwelaers, "A general line-line method for dielectric material characterization using conductors with the same cross-sectional geometry," IEEE Microwave and Wireless Components Letters, Vol. 28, 356-358, 2018.
doi:10.1109/LMWC.2018.2809041 Google Scholar
21. Lopez-Rodrıguez, P., D. Escot-Bocanegra, D. Poyatos-Martınez, and F. Weinmann, "Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites," Sensors, Vol. 16, 967-981, 2016.
doi:10.3390/s16070967 Google Scholar
22. Reynoso-Hernandez, J. A., "Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 13, 351-353, 2003.
doi:10.1109/LMWC.2003.815695 Google Scholar
23. Lin, X. and B. C. Seet, "Dielectric characterization at millimeter waves with hybrid microstrip-line method," IEEE Transactions on Instrumentation and Measurement, Vol. 66, 3100-3102, 2017.
doi:10.1109/TIM.2017.2746362 Google Scholar
24. Ouslimani, H. H., R. Abdeddaim, and A. Priou, "Free-space electromagnetic characterization of materials for microwave and radar applications," PIERS Proceedings, 128-132, Hangzhou, China, 2005. Google Scholar
25. Moukanda Mbango, F. and F. Ndagijimana, "Electric parameter extractions using a broadband technique from coaxial line discontinuities," International Journal of Scientific Research and Management, Vol. 7, 248-253, 2019.
doi:10.18535/ijsrm/v7i5.ec01 Google Scholar