Vol. 101
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-17
Contact ECG Recording Using Copper and E-Textile Based Flexible Dry Electrodes
By
Progress In Electromagnetics Research M, Vol. 101, 47-58, 2021
Abstract
We present experiments of contact electrocardiograms (ECG) recording using copper and e-textile-based flexible dry electrodes. In this work, dry electrodes with different shapes, sizes, and materials were designed and fabricated. In cardiac monitoring using these flexible dry electrodes, three different conditions were considered, which are sitting, standing, and walking. To evaluate the performances of the fabricated dry electrodes, average-to-variation ratios (AVR) of the recorded ECG signals measured using the flexible dry electrodes were calculated and compared with those measured using the commercially-available wet electrodes in all three conditions. The AVR results demonstrate that the dry electrodes have a similar performance as the commercially-available wet electrodes in the sitting and standing conditions and a better performance in the walking condition. These results suggest that it is possible to weave dry e-textile-based electrodes in normal clothing and use them for continuous monitoring of ECG signals in different conditions.
Citation
Kai Ren, Ruyu Ma, Mohammad Ranjbar Nikkhah, Steve Eggleston, Yu-Jiun Ren, and Nader Behdad, "Contact ECG Recording Using Copper and E-Textile Based Flexible Dry Electrodes," Progress In Electromagnetics Research M, Vol. 101, 47-58, 2021.
doi:10.2528/PIERM20092902
References

1. Searle, A. and L. Kirkup, "A direct comparison of wet, dry and insulating bioelectric recording electrodes," Physiol. Meas., Vol. 20, 271-283, 2000.
doi:10.1088/0967-3334/21/2/307        Google Scholar

2. Chi, Y. M., T. Jung, and G. Cauwenberghs, "Dry-contact and noncontact biopotential electrodes: Methodological review," IEEE Reviews Biomed. Eng., Vol. 3, 106-119, Feb. 2010.
doi:10.1109/RBME.2010.2084078        Google Scholar

3. Searle, A. and L. Kirkup, "Dry electrodes for electrocardiography," Physiol. Meas., Vol. 34, R47-R69, 2013.
doi:10.1088/0967-3334/34/9/R47        Google Scholar

4. Lopez, A. and P. C. Richardson, "Capacitive electrocardiographic and bioelectric electrodes," IEEE Trans. Biomed. Eng., Vol. 16, No. 1, 99, Jan. 1969.
doi:10.1109/TBME.1969.4502613        Google Scholar

5. Geddes, L. and M. Valentinuzzi, "Temporal changes in electrode impedance while recording the electrocardiogram with ``dry'' electrodes," Ann. Biomed. Eng., Vol. 1, 356-367, 1973.
doi:10.1007/BF02407675        Google Scholar

6. Valchinov, E. and N. Pallikarakis, "An active electrode for biopotential recording from small localized bio-sources," BioMed. Eng. OnLine, Vol. 3, No. 1, 25-38, 2004.
doi:10.1186/1475-925X-3-25        Google Scholar

7. Yan, L. and H. Yoo, "A low-power portable ECG touch sensor with two dry metal contact electrodes," J. Semicond. Technol. Sci., Vol. 10, No. 4, 300-308, Dec. 2010.
doi:10.5573/JSTS.2010.10.4.300        Google Scholar

8. Yoo, J., L. Yan, S. Lee, H. Kim, B. Kim, and H.-J. Yoo, "An attachable ECG sensor bandage with planar-fashionable circuit board," Proc. Int. Symp. Wearable Computers, 145-146, Sept. 2009.        Google Scholar

9. Gruetzmann, A., S. Hansen, and J. Müller, "Novel dry electrodes for ECG monitoring," Physiol. Meas., Vol. 28, No. 11, 1375-1390, 2007.
doi:10.1088/0967-3334/28/11/005        Google Scholar

10. Tseng, K. C., B. Lin, L. Liao, Y. Wang, and Y. Wang, "Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes," IEEE Syst. J., Vol. 8, No. 3, 900-906, Sept. 2014.
doi:10.1109/JSYST.2013.2260620        Google Scholar

11. Gargiulo, G., P. Bifulco, R. Calvo, M. Cesarelli, C. Jin, and A. V. Schaik, "Mobile biomedical sensing with dry electrodes," Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process., 261-266, Dec. 2008.        Google Scholar

12. Ishijima, M., "Monitoring of electrocardiograms in bed without utilizing body surface electrodes," IEEE Trans. Biomed. Eng., Vol. 40, No. 6, 593-594, Jun. 1993.
doi:10.1109/10.237680        Google Scholar

13. Mestrovic, M., R. Helmer, L. Kyratzis, and D. Kumar, "Preliminary study of dry knitted fabric electrodes for physiological monitoring," Proc. 3rd Int. Conf. Intell. Sensors, Sensor Netw. Inf., 601-606, 2007.        Google Scholar

14. Yokus, M. A. and J. S. Jur, "Fabric-based wearable dry electrodes for body surface biopotential recording," IEEE Trans. Biomed. Eng., Vol. 63, No. 2, 423-430, Feb. 2016.
doi:10.1109/TBME.2015.2462312        Google Scholar

15. Choi, Y., J. Lee, and S. Kong, "Driver ECG measuring system with a conductive fabric-based dry electrode," IEEE Access, Vol. 6, 415-427, Feb. 2018.
doi:10.1109/ACCESS.2017.2766098        Google Scholar

16. Taji, B., S. Shirmohammadi, V. Groza, and I. Batkin, "Impact of skin-electrode interface on electrocardiogram measurements using conductive textile electrodes," IEEE Trans. Instrum. Meas., Vol. 63, No. 6, 1412-1422, Jun. 2014.
doi:10.1109/TIM.2013.2289072        Google Scholar

17. Oh, T. I., et al. "Nanofiber web textile dry electrodes for long-term biopotential recording," IEEE Trans. Biomed. Circuits Syst., Vol. 7, 204-211, Apr. 2013.        Google Scholar

18. Qin, Q., J. Li, S. Yao, C. Liu, H. Huang, and Y. Zhu, "Electrocardiogram of a silver nanowire based dry electrode: quantitative comparison with the standard Ag/AgCl gel electrode," IEEE Access, Vol. 7, No. 2, 204-211, Feb. 2019.        Google Scholar

19. Jung, H., et al. "CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring," IEEE Trans. Biomed. Eng., Vol. 59, No. 5, 1472-1479, May 2012.
doi:10.1109/TBME.2012.2190288        Google Scholar

20. Reyes, B. A., et al. "Novel electrodes for underwater ECG monitoring," IEEE Trans. Biomed. Eng., Vol. 61, No. 6, 1863-1876, Jun. 2014.
doi:10.1109/TBME.2014.2309293        Google Scholar

21. Luo, C., et al. "An ECG acquisition system prototype design with flexible PDMS dry electrodes and variable transform length DCT-IV based compression algorithm," IEEE Sensors J., Vol. 16, No. 23, 8244-8254, Dec. 2016.        Google Scholar

22. Peng, H., J. Liu, Y. Dong, B. Yang, X. Chen, and C. Yang, "Parylene-based flexible dry electrode for bioptential recording," Sensors and Actuators B Chem., Vol. 231, 1-11, Feb. 2016.
doi:10.1016/j.snb.2016.02.061        Google Scholar

23. Guo, X., et al. "A self-wtting paper electrode for ubiquitous bio-potential monitoring," IEEE Sensors J., Vol. 17, No. 9, 2654-2661, May 2017.
doi:10.1109/JSEN.2017.2684825        Google Scholar

24. Chlaihawi, A. A., B. B. Narakathu, S. Emamian, B. J. Bazuin, and M. Z. Atashbar, "Development of printed and flexible dry ECG electrodes," Sensing and Bio-Sensing Research, Vol. 20, 9-15, May 2018.
doi:10.1016/j.sbsr.2018.05.001        Google Scholar

25. Quesnel, P. X., A. D. C Chan, and H. Yang, "Real-time biosignal quality analysis of ambulatory ECG for detection of myocardial ischemia," IEEE Int. Symp. Med. Meas. Appl., 1-5, Gatineau, QC, Canada, May 4-5, 2013.        Google Scholar

26. BioPac electrodes, [Online]. Available: https://www.biopac.com/product/general-purpose-electrodes.

27. "3M copper tape,", [Online]. Available: https://multimedia.3m.com/mws/media/37370O/3m-copper-foil-tape-1181-with-conductive-adhesive.pdf.        Google Scholar

28. Tylson conductive silver fabric, [Online]. Available: https://www.tylson.com/products/black-and-silver-rfid-blocking-faraday-shielded-fabric-radiation-wifi-rf-shielding-40x40-nickel-copper-emf-identity-theft-blocker-for-your-wallet-phone-or-laptop-includes-20-grounding-cord.

29. Backyard brains heart and brain spiker, [Online]. Available: https://backyardbrains.com/products/heartAndBrainSpikerBox.

30. Winter, B. B. and J. G. Webster, "Driven-right-leg circuit design," IEEE Trans. Biomed. Eng., Vol. 30, No. 1, 62-66, Jan. 1983.
doi:10.1109/TBME.1983.325168        Google Scholar