Vol. 101
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-18
Millimeter-Wave Frequency-Diverse Imaging with Phased Array Intended for Communications
By
Progress In Electromagnetics Research M, Vol. 101, 69-78, 2021
Abstract
This paper presents a recent progress in a millimeter-wave imaging done with a potential 5G base-station phased-array antenna exhibiting frequency-diverse, non-focused beams. The presented imaging system operates in 24-32 GHz band and is the first realization where phased arrays primarily developed for 5G communications are utilized in a frequency-diverse imaging application. The image reconstruction method solves the linear inverse problem with an iterative algorithm, and several images have been reconstructed based on the measurement data. Currently, a metallic sphere can be successfully located in the target space. However, future work is still required, and the paper further discusses the possibilities and restrictions of the current imaging setup.
Citation
Mikko K. Leino Jan Bergman Juha Ala-Laurinaho Ville Viikari , "Millimeter-Wave Frequency-Diverse Imaging with Phased Array Intended for Communications," Progress In Electromagnetics Research M, Vol. 101, 69-78, 2021.
doi:10.2528/PIERM20120102
http://www.jpier.org/PIERM/pier.php?paper=20120102
References

1. Gu, X., A. Valdes-Garcia, A. Natarajan, B. Sadhu, D. Liu, and S. K. Reynolds, "W-band scalable phased arrays for imaging and communications," IEEE Communications Magazine, Vol. 53, No. 4, 196-204, Apr. 2015.
doi:10.1109/MCOM.2015.7081095

2. Eudeline, P., "Survey of active electronically scanned antenna in Thales radars," 2013 IEEE International Symposium on Phased Array Systems and Technology, 12-16, Waltham, USA, Oct. 2013.

3. Agrawal, A. K. and E. L. Holzman, "Beamformer architectures for active phased-array radar antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 432-442, Mar. 1999.
doi:10.1109/8.768777

4. Kibaroglu, K., M. Sayginer, T. Phelps, and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8-12-Gb/s 5G link at 300 meters without any calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5796-5811, Dec. 2018.
doi:10.1109/TMTT.2018.2854174

5. Leino, M. K., R. Montoya Moreno, J. Ala-Laurinaho, R. Valkonen, and V. Viikari, "Waveguide-based phased array with integrated element-specific electronics for 28 GHz," IEEE Access, Vol. 7, 90 045-90 054, 2019.
doi:10.1109/ACCESS.2019.2925458

6. Kuai, L., J. Chen, Z. H. Jiang, C. Yu, C. Guo, Y. Yu, H. Zhou, and W. Hong, "A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications," IEEE Access, Vol. 8, 47 640-47 653, 2020.
doi:10.1109/ACCESS.2020.2978070

7. Guan, J., A. Paidimarri, A. Valdes-Garcia, and B. Sadhu, "3D imaging using mmWave 5G signals," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 147-150, Los Angeles, USA, Aug. 2020.

8. Liu, F., C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, "Joint radar and communication design: Applications, state-of-the-art, and the road ahead," IEEE Transactions on Communications, Vol. 68, No. 6, 3834-3862, Jun. 2020.
doi:10.1109/TCOMM.2020.2973976

9. Ahmed, S. S., A. Schiessl, and L. Schmidt, "A novel fully electronic active real-time imager based on a planar multistatic sparse array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3567-3576, Dec. 2011.
doi:10.1109/TMTT.2011.2172812

10. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, Mar. 2013.
doi:10.1109/MGRS.2013.2248301

11. Imani, M. F., J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, "Review of metasurface antennas for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1860-1875, Mar. 2020.
doi:10.1109/TAP.2020.2968795

12. Zvolensky, T., V. R. Gowda, J. Gollub, D. L. Marks, and D. R. Smith, "W-band sparse imaging system using frequency diverse cavity-fed metasurface antennas," IEEE Access, Vol. 6, 73 659-73 668, 2018.
doi:10.1109/ACCESS.2018.2883402

13. Yurduseven, O., T. Fromenteze, and D. R. Smith, "Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval," IEEE Access, Vol. 6, 14 884-14 894, 2018.
doi:10.1109/ACCESS.2018.2816341

14. Yurduseven, O., T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, "Frequency-diverse computational microwave phaseless imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2808-2811, 2017.

15. Odabasi, H., M. Imani, G. Lipworth, J. Gollub, and D. Smith, "Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures," Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016.
doi:10.2528/PIERB16052801

16. Leino, M. K., J. Ala-Laurinaho, Z. Purisha, S. Särkkä, and V. Viikari, "Millimeter-wave imaging method based on frequency-diverse subarrays," 2019 12th Global Symposium on Millimeter Waves (GSMM), 84-86, Sendai, Japan, May 2019.
doi:10.1109/GSMM.2019.8797670

17. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, Dec. 2007.
doi:10.1109/TIP.2007.909319

18. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002

19. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, Aug. 2013.
doi:10.1364/JOSAA.30.001603

20. Zhu, R., T. Zvolensky, and D. Marks, "Millimeter wave computational imaging with 3D printed leaky wave frequency diverse antenna," 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 1, Copenhagen, Denmark, Sep. 2016.

21. Tamminen, A., S.-V. Pälli, J. Ala-Laurinaho, A. Aspelin, A. Oinaanoja, and Z. Taylor, "Holograms with neural-network backend for submillimeter-wave beamforming applications," Proc. SPIE, Vol. 11411, 10 pages, Online Only, Apr. 2020.

22. Gu, X., D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, P. Parida, Y. Kwark, and A. Valdes-Garcia, "Development, implementation, and characterization of a 64-element dual polarized phased-array antenna module for 28-GHz high-speed data communications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 7, 2975-2984, Jul. 2019.
doi:10.1109/TMTT.2019.2912819

23. Kähkönen, H., J. Ala-Laurinaho, and V. Viikari, "Dual-polarized Ka-band Vivaldi antenna array," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2675-2683, Apr. 2020.
doi:10.1109/TAP.2019.2948561

24. Nafe, A., M. Sayginer, K. Kibaroglu, and G. M. Rebeiz, "2×64-element dual-polarized dual-beam single-aperture 28-GHz phased array with 2×30 Gb/s links for 5G polarization MIMO," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3872-3884, Sep. 2020.
doi:10.1109/TMTT.2020.2989117