1. Behera, B. R., P. R. Meher, and S. K. Mishra, "Microwave antennas — An intrinsic part of RF energy harvesting systems: A contingent study about its design methodologies and state-of-art technologies in current scenario," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22148, 1-27, 2020.
doi:10.1002/mmce.22148 Google Scholar
2. Maybell, M. J., "A polarization basics diagram," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 130-135, 2019.
doi:10.1109/MAP.2018.2883054 Google Scholar
3. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Transactions on Education, Vol. 46, No. 3, 313-318, 2003.
doi:10.1109/TE.2003.813519 Google Scholar
4. Mishra, S. K., et al., "A compact dual-band fork-shaped monopole antenna for Bluetooth and UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 627-630, 2011.
doi:10.1109/LAWP.2011.2159572 Google Scholar
5. Liang, J., et al., "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598 Google Scholar
6. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901 Google Scholar
7. Mathur, M., A. Agrawal, G. Singh, and S. K. Bhatnagar, "A compact coplanar waveguide fed wideband monopole antenna for RF energy harvesting applications," Progress In Electromagnetics Research M, Vol. 63, 175-184, 2018.
doi:10.2528/PIERM17101201 Google Scholar
8. Dastranj, A., "Very small planar broadband monopole antenna with hybrid trapezoidal-elliptical radiator," IET Microwaves, Antennas & Propagation, Vol. 61, No. 4, 542-547, 2017.
doi:10.1049/iet-map.2016.0701 Google Scholar
9. Elsheakh, D. M. and E. A. Abdallah, "Ultra-wide-bandwidth (UWB) microstrip monopole antenna using split ring resonator (SRR) structure," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 123-132, 2018.
doi:10.1017/S1759078717001131 Google Scholar
10. Ray, K. P. and Y. Ranga, "Ultrawideband printed elliptical monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1189-1192, 2007.
doi:10.1109/TAP.2007.893408 Google Scholar
11. Ghosh, S. and A. Chakrabarty, "Dual band circularly polarized monopole antenna design for RF energy harvesting," IETE Journal of Research, Vol. 62, No. 1, 9-16, 2016.
doi:10.1080/03772063.2015.1076359 Google Scholar
12. Yue, T., Z. H. Jiang, and D. H. Werner, "Compact, wideband antennas enabled by interdigitated capacitor-loaded metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1595-1606, 2016.
doi:10.1109/TAP.2016.2535499 Google Scholar
13. Wu, Z., et al., "Metasurface superstrate antenna with wideband circular polarization for satellite communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 374-377, 2016.
doi:10.1109/LAWP.2015.2446505 Google Scholar
14. Chen, Q., et al., "Wideband and low axial ratio circularly polarized antenna using AMC-based structure polarization rotation reflective surface," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1058-1064, 2018.
doi:10.1017/S1759078718000958 Google Scholar
15. Yang, W., et al., "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130 Google Scholar
16. Chair, R., et al., "Aperture fed wideband circularly polarized rectangular stair shaped dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1350-1352, 2006.
doi:10.1109/TAP.2006.872665 Google Scholar
17. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475 Google Scholar
18. Altaf, A., et al., "Circularly polarized spidron fractal dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1806-1809, 2015.
doi:10.1109/LAWP.2015.2427373 Google Scholar
19. Kumar, R., S. R. Thummaluru, and R. K. Chaudhary, "Improvements in Wi-MAX reception: A new dual-mode wideband circularly polarized dielectric resonator antenna," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 41-49, 2019.
doi:10.1109/MAP.2018.2883013 Google Scholar
20. Divakaran, S. K., D. D. Krishna, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21633, 1-15, 2019.
doi:10.1002/mmce.21633 Google Scholar
21. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, 2020.
doi:10.1109/MAP.2020.3012872 Google Scholar
22. Behera, B. R., et al., "A compact broadband circularly polarized printed monopole antenna using twin parasitic conducting strips and rectangular metasurface for RF energy harvesting application," AEU --- International Journal of Electronics and Communications, Vol. 120, No. 15233, 1-10, 2020. Google Scholar
23. Harrington, R. F., Time-harmonic Electromagnetic Fields, Wiley-IEEE Press, 2001.
doi:10.1109/9780470546710
24. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3325-3329, 2015.
doi:10.1109/TAP.2015.2429741 Google Scholar
25. Kirov, G. S., "Evaluation of the frequency bandwidth and gain properties of antennas: Characteristics of circularly polarized microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 62, No. 3, 74-82, 2020.
doi:10.1109/MAP.2020.2976912 Google Scholar
26. Liu, W. E. I., et al., "Miniaturized wideband metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7345-7349, 2017.
doi:10.1109/TAP.2017.2761550 Google Scholar
27. Wang, J., et al., "Broadband CPW-fed aperture coupled metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 517-520, 2019.
doi:10.1109/LAWP.2019.2895618 Google Scholar
28. Rajanna, P. K., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, 2020.
doi:10.1017/S1759078719001119 Google Scholar
29. Din, N. M., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002 Google Scholar
30. Liu, R., et al., "Metasurface: Enhancing gain of antenna and energy harvesting system design," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 2, e22053, 1-11, 2020. Google Scholar