1. Wang, Y., C. Ma, W. Yang, and X. Li, "Addition of interdigital capacitor to reduce crosstalk between non-parallel microstrip lines," Progress In Electromagnetics Research Letters, Vol. 92, 133-138, 2020.
doi:10.2528/PIERL20050204 Google Scholar
2. Mbairi, F. D., W. P. Siebert, and H. Hesselbom, "High-frequency transmission lines crosstalk reduction using spacing rules," IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, 601-610, 2008.
doi:10.1109/TCAPT.2008.2001163 Google Scholar
3. Queshi, H. N., I. Ullah, S. Khan, J. Ur Rehman Kazim, and S. Khattak, "Strong coupling (crosstalk) between printed microstrip transmission lands on printed circuit boards," 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 711-716, Islamabad, 2017. Google Scholar
4. Lee, K., H. Lee, H. Jung, J. Sim, and H. Park, "A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstrip lines," IEEE Transactions on Advanced Packaging, Vol. 31, No. 4, 809-817, 2008.
doi:10.1109/TADVP.2008.924226 Google Scholar
5. Cheng, Y., W. Guo, C. Hung, R. Wu, and D. De Zutter, "Enhanced microstrip guard trace for ringing noise suppression using a dielectric superstrate," IEEE Transactions on Advanced Packaging, Vol. 33, No. 4, 961-968, 2010.
doi:10.1109/TADVP.2010.2040033 Google Scholar
6. Wang, L. B., K. Y. See, W. Y. Chang, and Z. G. Phang, "Comprehensive study of crosstalk isolation for high-speed digital board," 2008 Asia-Pacifc Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 867-870, Singapore, 2008. Google Scholar
7. Ponchak, G. E., D. Chun, J.-G. Yook, and L. P. B. Katehi, "Experimental verification of the use of metal filled via hole fences for crosstalk control of microstrip lines in LTCC packages," IEEE Transactions on Advanced Packaging, Vol. 24, No. 1, 76-80, 2001.
doi:10.1109/6040.909628 Google Scholar
8. Jing, X. and R. Zhou, "Crosstalk analysis and simulation in high-speed PCB design," 2007 8th International Conference on Electronic Measurement and Instruments, 437-440, Xian, 2007. Google Scholar
9. Mallahzadeh, A. R., A. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, "Crosstalk reduction using step shaped transmission line," Progress In Electromagnetics Research C, Vol. 12, 139-148, 2010.
doi:10.2528/PIERC09121606 Google Scholar
10. Liu, X., Y. Li, Y. Zhao, L. Zhao, V. Mordachev, and E. Sinkevich, "Equivalent circuit model of crosstalk reduction parallel transmission lines with defected microstrip structures," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2, Xuzhou, 2018. Google Scholar
11. Young, B., Digital Signal Integrity: Modelling and Simulation with Interconnects and Packages, 98-103, Prentice Hall PTR, 2001.
12. Zhang, L., et al. "Far-end crosstalk mitigation for microstrip lines in high-speed PCBs," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, Taiyuan, China, 2019. Google Scholar
13. Yuan, W., S. Song, Y. Cheng, L. Xie, and Y. Zhang, "Wide stopband lowpass filter based on defected microstrip structure," 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 366-369, Xiamen, 2017. Google Scholar
14. Li, Y., W. Li, and Q. Ye, "A reconfigurable triple notch band antenna integrated with defected microstrip structure band-stop filter for ultra-wide band cognitive radio applications," International Journal of Antennas and Propagation, 1-13, 2013. Google Scholar
15. Kim, C.-S., et al. "The equivalent circuit modeling of defected ground structure with spiral shape," 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Vol. 3, 2125-2128, Seattle, WA, USA, 2002. Google Scholar
16. Jiang, T., Y. Wang, and Y. Li, "Design and analysis of a triple stop-band filter using ratioed periodical defected microstrip structure," Frequenz, Vol. 71, 341-347, 2017. Google Scholar