1. Velez, P., J. Naqui, A. Prieto, M. sindreu, J. Bonache, J. Martel, F. Madina, and F. Martın, "Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators," IEEE Microw. Wirel. Components Lett., Vol. 23, No. 1, 22-24, Jan. 2013.
doi:10.1109/LMWC.2012.2236083 Google Scholar
2. Karami, M., P. Rezaei, S. Kiani, and R. A. Sadeghzadeh, "Modified planar sensor for measuring dielectric constant of liquid materials," Electron Lett., Vol. 53, No. 19, 1300-1302, Sep. 2017.
doi:10.1049/el.2017.2481 Google Scholar
3. Xie, Y., F. Shen, T. Zhou, B. Zhang, J. Wang, C. Li, and L. Ran, "Remote measurement of dielectric constants for samples with arbitrary cross sections," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 10, 1005-1008, Oct. 2020.
doi:10.1109/LMWC.2020.3016735 Google Scholar
4. Ye, D., O. Omkar, and P. Wang, "A dual-mode microwave resonator for liquid chromatography applications," IEEE Sensors Journal, Vol. 21, No. 2, 1222-1228, 2021.
doi:10.1109/JSEN.2020.3018683 Google Scholar
5. Wu, C., Y. Liu, S. Lu, S. Gruszczynski, and Y. Yashchyshyn, "Convenient waveguide technique for determining permittivity and permeability of materials," IEEE Trans. Microw. Theory Tech., Vol. 68, No. 11, 4905-4912, Nov. 2020.
doi:10.1109/TMTT.2020.3009995 Google Scholar
6. Adhikari, K. K. and N.-Y. Kim, "Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 319-327, Jan. 2016.
doi:10.1109/TMTT.2015.2503275 Google Scholar
7. Yin, B., Z. Lin, X. Cai, H. Hao, W. Luo, and W. Huang, "A novel compact CRLH bandpass filter on CSRR-loaded substrate integrated waveguide cavity," Progress In Electromagnetics Research M, Vol. 75, 121-129, 2018.
doi:10.2528/PIERM18092607 Google Scholar
8. Gil, M., P. Velez, F. Aznar-Ballesta, J. Munoz-Enano, and F. Martın, "Differential sensor based on electroinductive wave transmission lines for dielectric constant measurements and defect detection," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1876-1886, Mar. 2020.
doi:10.1109/TAP.2019.2938609 Google Scholar
9. Kayal, S., T. Shaw, and D. Mitra, "Design of metamaterial-based compact and highly sensitive microwave liquid sensor," Applied Physics A, Vol. 126, No. 1, 1-9, 2020.
doi:10.1007/s00339-019-3186-4 Google Scholar
10. Yang, C., C. Lee, K. Chen, and K. Chen, "Noncontact measurement of complex permittivity and thickness by using planar resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 247-257, Jan. 2016.
doi:10.1109/TMTT.2015.2503764 Google Scholar
11. Alahnomi, R. A., Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," IEEE Sensors J., Vol. 17, No. 9, 2766-2775, May 2017.
doi:10.1109/JSEN.2017.2682266 Google Scholar
12. Sungyun, J., B. S. Izquierdo, and E. A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3366-3373, May 2019.
doi:10.1109/TAP.2019.2902663 Google Scholar
13. Velez, P., J. Munoz-Enano, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martın, "Split Ring Resonator (SRR) based microwave fluidic sensors for electrolyte concentration measurements," IEEE Sens. J., Vol. 19, No. 7, 2562-2569, Apr. 2019.
doi:10.1109/JSEN.2018.2890089 Google Scholar
14. Teran-Bahena, E. Y., S. C. Sejas-Garcıa, and R. Torres-Torres, "Permittivity determination considering the metal surface roughness effect on the microstrip line series inductance and shunt capacitance," IEEE Trans. Microw. Theory Tech., Vol. 68, No. 6, 2428-2434, Jun. 2020.
doi:10.1109/TMTT.2020.2979964 Google Scholar
15. Abdolrazzaghi, M., S. Khan, and M. Daneshmand, "A dual-mode split-ring resonator to eliminate relative humidity impact," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 10, 939-941, Oct. 2018.
doi:10.1109/LMWC.2018.2860596 Google Scholar
16. Lee, C. S. and C. L. Yang, "Thickness and permittivity measurement in multi-layered dielectric structures using complementary split-ring resonators," IEEE Sensors J., Vol. 14, No. 3, 695-700, Mar. 2014.
doi:10.1109/JSEN.2013.2285918 Google Scholar
17. Arab, M., X. Garros, J. Cluzel, M. Rafik, X. Federspiel, and G. Ghibaudo, "A new direct measurement method of time dependent dielectric breakdown at high frequency," IEEE Trans. Electron Devices, Vol. 41, No. 10, 1460-1463, Oct. 2020.
doi:10.1109/LED.2020.3016383 Google Scholar
18. Zhang, J., D. Du, Y. Bao, J. Wang, and Z. Wei, "Development of multifrequency-swept microwave sensing system for moisture measurement of sweet corn with deep neural network," IEEE Trans. Instrum Meas., Vol. 69, No. 9, 6446-6454, Sept. 2020.
doi:10.1109/TIM.2020.2972655 Google Scholar
19. Bonello, J., A. Demarco, I. Farhat, L. Farrugia, and C. V. Sammut, "Application of artificial neural networks for accurate determination of the complex permittivity of biological tissue," Sensors, Vol. 20, No. 16, Aug. 2020.
doi:10.3390/s20164640 Google Scholar
20. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. Bravo Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors J., Vol. 18, No. 24, 9978-9983, Dec. 2018.
doi:10.1109/JSEN.2018.2872859 Google Scholar
21. Galindo-Romera, G., F. J. Herraiz-Martınez, M. Gil, J. J. Martinez-Martinez, and D. Segovia-Vargas, "Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization," IEEE Sens. J., Vol. 16, No. 10, 3578-3596, May 2016.
doi:10.1109/JSEN.2016.2538086 Google Scholar
22. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wirel. Components Lett., Vol. 24, No. 8, 563-565, Aug. 201.
doi:10.1109/LMWC.2014.2318900 Google Scholar
23. Hao, H., D. Wang, Z. Wang, B. Yin, and W. Ruan, "Design of a high sensitivity microwave sensor for liquid dielectric constant measurement," Sensors, Vol. 20, No. 19, Oct. 2020. Google Scholar
24. Su, L., J. Mata-Contreras, P. Velez, and F. Martın, "Splitter/Combiner microstrip sections loaded with pairs of Complementary Split Ring Resonators (CSRRs): Modeling and optimization for differential sensing applications," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4362-4370, Dec. 2016.
doi:10.1109/TMTT.2016.2623311 Google Scholar
25. Jafari, F. and J. Ahmadi, "Reconfigurable microwave SIW sensor based on PBG structure for high accuracy permittivity characterization of industrial liquids," Sens. Actuators A Phys., Vol. 283, 386-395, Nov. 2018. Google Scholar
26. Lobato-Morales, H., D. V. B. Murthy, A. Corona-Chavez, J. L. Olvera-Cervantes, J. Martinez-Brito, and L. G. Guerrero-Ojeda, "Permittivity measurements at microwave frequencies using Epsilon-Near-Zero (ENZ) tunnel structure," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 7, 1863-1868, Jul. 2011.
doi:10.1109/TMTT.2011.2132141 Google Scholar