1. Gautam, A. K., A. Bisht, and B. K. Kanaujia, "A wideband antenna with defected ground plane forWLAN/WiMAX applications," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 3, 354-358, 2016.
doi:10.1016/j.aeue.2015.12.013 Google Scholar
2. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703 Google Scholar
3. Li, L., et al., "A compact triple-band printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1853-1855, 2016.
doi:10.1109/LAWP.2016.2539358 Google Scholar
4. Hoang, T. V., et al., "Quad-band circularly polarized antenna for 2.4/5.3/5.8-GHz WLAN and 3.5-GHz WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1032-1035, 2015. Google Scholar
5. Naidu, P. V., A. Malhotra, and R. Kumar, "A compact ACS-fed dual-band monopole antenna for LTE, WLAN/WiMAX and public safety applications," Microsystem Technologies, Vol. 22, No. 5, 1021-1028, 2016.
doi:10.1007/s00542-015-2562-z Google Scholar
6. Mathew, S., et al., "Compact dual polarised V slit, stub and slot embedded circular patch antenna for UMTS/WiMAX/WLAN applications," Electronics Letters, Vol. 52, No. 17, 1425-1426, 2016.
doi:10.1049/el.2016.1996 Google Scholar
7. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
doi:10.1017/S1759078715001105 Google Scholar
8. Ahmad, H., et al., "Compact triband slotted printed monopole antenna for WLAN and WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, 2019. Google Scholar
9. Nelaturi, S. and N. V. S. N. Sarma, "A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 182-187, 2018.
doi:10.26866/jees.2018.18.3.182 Google Scholar
10. Ali, T., et al., "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 79-85, 2018.
doi:10.1002/mop.30921 Google Scholar
11. Li, H., et al., "Dual-band planar antenna loaded with CRLH unit cell for WLAN/WiMAX application," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 132-136, 2017.
doi:10.1049/iet-map.2016.1133 Google Scholar
12. Alibakhshikenari, M., et al., "A comprehensive survey of “Metamaterial transmission-line based antennas: Design, challenges, and applications”," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698 Google Scholar
13. Alibakhshikenari, M., et al., "Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications," Sensors, Vol. 19, No. 10, 2306, 2019.
doi:10.3390/s19102306 Google Scholar
14. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172 Google Scholar
15. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2339-2344, 2015.
doi:10.1002/mop.29328 Google Scholar
16. Alibakhshi-Kenari, M., et al., "Miniature CRLH-based ultra wideband antenna with gain enhancement for wireless communication applications," ICT Express, Vol. 2, No. 2, 75-79, 2016.
doi:10.1016/j.icte.2016.04.001 Google Scholar
17. Alibakhshikenari, M., et al., "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141 Google Scholar
18. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna design using metamaterial transmission lines," Radio Science, Vol. 52, No. 12, 1510-1521, 2017.
doi:10.1002/2017RS006313 Google Scholar
19. Alibakhshi-Kenari, M., et al., "New CRLH-based planar slotted antennas with helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF-SHF bands," Wireless Personal Communications, Vol. 92, No. 3, 1029-1038, 2017.
doi:10.1007/s11277-016-3590-4 Google Scholar
20. Alibakhshi-Kenari, M., et al., "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069 Google Scholar
21. Alibakhshi-Kenari, M., et al., "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956 Google Scholar
22. Alibakhshi-Kenari, M., et al., "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, 2016.
doi:10.1002/mmce.20942 Google Scholar
23. Sallam, M. O., et al., "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMax systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, 2017.
doi:10.1109/TAP.2017.2710227 Google Scholar
24. Priyadarshini, S. J. and D. J. Hemanth, "Investigation and reduction methods of specific absorption rate for biomedical applications: A survey," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 28, No. 3, e21211, 2018.
doi:10.1002/mmce.21211 Google Scholar
25. Stephen, J. P. and D. J. Hemanth, "An investigation on specific absorption rate reduction materials with human tissue cube for biomedical applications," International Journal of RF and Microwave Computer-Aided Engineering, e21960, 2019. Google Scholar
26. Hwang, J.-N. and F.-C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3763-3770, 2006.
doi:10.1109/TAP.2006.886501 Google Scholar
27. Saraswat, R. K. and M. Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21824, 2019. Google Scholar
28. Imaculate Rosaline, S. and S. Raghavan, "Design and analysis of a SRR superstrate for SAR reduction," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 17, 2330-2338, 2015.
doi:10.1080/09205071.2015.1091384 Google Scholar
29. Janapala, D. K., et al., "Specific absorption rate reduction using metasurface unit cell for flexible polydimethylsiloxane antenna for 2.4 GHz wearable applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21835, 2019.
doi:10.1002/mmce.21835 Google Scholar
30. Gil, I., R. Seager, and R. Fernandez-Garcıa, "Embroidered metamaterial antenna for optimized performance on wearable applications," Physica Status Solidi (A), Vol. 215, No. 21, 1800377, 2018.
doi:10.1002/pssa.201800377 Google Scholar
31. Nazeri, A., A. Abdolali, and M. Mehdi, "An extremely safe low-SAR antenna with study of its electromagnetic biological effects on human head," Wireless Personal Communications, 1-14, 2019. Google Scholar
32. Ramachandran, T., et al., "Specific absorption rate reduction of multi split square ring metamaterial for L- and S-band application," Results in Physics, 102668, 2019.
doi:10.1016/j.rinp.2019.102668 Google Scholar
33. Chen, H., J. Zhang, Y. Bai, et al. "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express., Vol. 14, 12944-12949, 2006, 10.1364/OE.14.012944.
doi:10.1364/OE.14.012944 Google Scholar
34. Smith, D. R., et al., "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
35. Baena, J. D., J. Bonache, F. Martın, R. Marques, F. Falcone, T. Lopetegi, M. Laso, J. Garcıa- Garcıa, I. Gil, M. Portillo, and M. Sorolla Ayza, "Equivalent-Circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005, 10.1109/TMTT.2005.845211.
doi:10.1109/TMTT.2005.845211 Google Scholar