1. Padgett, M., J. Courtial, and L. Allen, "Light’s orbital angular momentum," Physics Today, Vol. 57, No. 5, 35, May 2004.
doi:10.1063/1.1768672 Google Scholar
2. Kildishev, A., A. Boltasseva, and V. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 1232009-1232009, 2013.
doi:10.1126/science.1232009 Google Scholar
3. Genevet, P., F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139, 2017.
doi:10.1364/OPTICA.4.000139 Google Scholar
4. Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, "Optically resonant dielectric nanostructures," Science, Vol. 354, No. 6314, 2472, 2016.
doi:10.1126/science.aag2472 Google Scholar
5. Hui, X., S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, et al. "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, Apr. 2015.
doi:10.1109/LAWP.2014.2387431 Google Scholar
6. Chen, Y., et al. "A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. , Vol. 15, 1156-1158, 2016.
doi:10.1109/LAWP.2015.2497243 Google Scholar
7. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased array for generating OAM radio beams," Electron. Lett., Vol. 50, No. 20, 1414-1415, Sep. 2014.
doi:10.1049/el.2014.2860 Google Scholar
8. Hui, X., et al. "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Sci. Rep., Vol. 5, 1-9, 2015. Google Scholar
9. Niemiec, R., C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, "Characterization of an OAM flat-plate antenna in the millimeter frequency band," IEEE Antennas Propag. Lett., Vol. 13, 1011-1014, 2014.
doi:10.1109/LAWP.2014.2326525 Google Scholar
10. Yue, F., D. Wen, J. Xin, B. D. Geradot, J. Li, and X. Chen, "Vector vortex beam generation with a single plasmonic metasurface," ACS Photonics, Vol. 3, No. 9, 1558-1563, 2016.
doi:10.1021/acsphotonics.6b00392 Google Scholar
11. Yang, Z., D.-F. Kuang, and F. Cheng, "Vector vortex beam generation with dolphin-shaped cell meta-surface," Optics Express, Vol. 25, No. 9, 22780-22788, 2017.
doi:10.1364/OE.25.022780 Google Scholar
12. Zhang, Y., J. Gao, and X. Yang, "Spatial variation of vector vortex beams with plasmonic metasurfaces," Sci. Rep., Vol. 9, No. 1, 1-11, 2019. Google Scholar
13. Ding, F., Y. Chen, and S. I. Bozhevolnyi, "Focused vortex-beam generation using gap-surface plasmon metasurfaces," Nanophotonics, Vol. 9, No. 2, 371-378, 2020.
doi:10.1515/nanoph-2019-0235 Google Scholar
14. Ji, C., J. Song, C. Huang, X. Wu, and X. Luo, "Dual-band vortex beam generation with different OAM modes using single layer metasurface," Optics Express, Vol. 27, No. 1, 34-44, 2019.
doi:10.1364/OE.27.000034 Google Scholar
15. Zhou, H., J. Yang, C. Gao, and S. Fu, "High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation," Optical Materials Express, Vol. 9, No. 6, 2699-2707, 2019.
doi:10.1364/OME.9.002699 Google Scholar
16. Yang, J., H. Zhou, and T. Lan, "All-dielectric reflective metasurface for orbital angular momentum beam generation," Optical Materials Express, Vol. 9, No. 9, 3594-3603, 2019.
doi:10.1364/OME.9.003594 Google Scholar
17. Mahmood, N., et al. "Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides," Nanoscale, Vol. 10, No. 38, 18323-18330, 2018.
doi:10.1039/C8NR05633A Google Scholar
18. Mahmood, N., et al. "Twisted non-diffracting beams through all dielectric meta-axicons," Nanoscale, Vol. 11, No. 43, 20571-20578, 2019.
doi:10.1039/C9NR04888J Google Scholar
19. Yang, Y., W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflectarray for broadband linear polarization conversion and optical vortex generation," Nano Lett., Vol. 14, No. 3, 1394-1399, 2014.
doi:10.1021/nl4044482 Google Scholar
20. Shen, Y., X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light Sci. Appl., Vol. 8, 90, Aug. 2019.
doi:10.1038/s41377-019-0194-2 Google Scholar
21. Hranilovic, S., "Trends and progress in optical wireless communications," 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 — Proc., 26-28, 2017. Google Scholar
22. Sun, X., et al. "71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation," Opt. Express, Vol. 25, No. 19, 23267, 2017.
doi:10.1364/OE.25.023267 Google Scholar
23. Wang, J., et al. "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nat. Photon., Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138 Google Scholar
24. Bozinovic, N., et al. "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, 1545-48, 2013.
doi:10.1126/science.1237861 Google Scholar
25. Huang, H., et al. "100 Tbit/s free-space data link enabled by three dimensional multiplexing of orbital angular momentum, polarization, and wavelength," Opt. Lett., Vol. 39, 197-200, Jan. 2014.
doi:10.1364/OL.39.000197 Google Scholar
26. Phillip, H. R. and E. A. Taft, "Kramers-Kronig analysis of reflectance data for diamond," Phys. Rev., Vol. 136, A1445-A1448, 1964.
doi:10.1103/PhysRev.136.A1445 Google Scholar
27. Savenkov, S. N., "Jones and Mueller matrices: Structure symmetry relations and information content," Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer, 71–114, Praxis Publishing, Chichester, U.K., 2009. Google Scholar