1. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air fed array antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 187-191, 2010.
doi:10.1109/LAWP.2010.2045470 Google Scholar
2. Jagtap, S., A. Chaudhari, N. Chaskar, S. Kharche, and R. K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 509-512, 2018.
doi:10.1109/LAWP.2018.2799873 Google Scholar
3. Meriche, M. A., H. Attia, A. Messai, S. I. M. Sheikh, and T. A. Denidni, "Directive wideband cavity antenna with single layer metasuperstrate," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1771-1774, 2019.
doi:10.1109/LAWP.2019.2929579 Google Scholar
4. Xu, Y., R. Lian, Z. Wang, and Y.-Z. Yin, "Wideband Fabry-Perot resonator antenna with single layer partially reflective surface," Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017.
doi:10.2528/PIERL16072806 Google Scholar
5. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas Wireless Propag. Lett., Vol. 14, 229-232, 2015.
doi:10.1109/LAWP.2014.2360703 Google Scholar
6. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755 Google Scholar
7. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using an FSS superstrate layer," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 2101-2106, 2012.
doi:10.1109/TAP.2012.2186230 Google Scholar
8. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533 Google Scholar
9. Chen, J., Y. Zhao, Y. Ge, and L. Xing, "Dual-band high-gain Fabry Perot cavity antenna with a shared-aperture FSS layer," IET Microw. Antennas Propag., Vol. 12, No. 13, 2007-2011, Oct. 2018.
doi:10.1049/iet-map.2018.5183 Google Scholar
10. Dang, D.-N. and C. Seo, "Compact high gain resonant cavity antenna with via hole feed patch and hybrid parasitic ring superstrate," IEEE Access, Vol. 7, 161963-161974, 2019.
doi:10.1109/ACCESS.2019.2950726 Google Scholar
11. Ji, L.-Y., P.-Y. Qin, and Y. J. Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2018.
doi:10.1109/ACCESS.2017.2782749 Google Scholar
12. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetic Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205 Google Scholar
13. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 208-212, 2020.
doi:10.1109/LAWP.2019.2958108 Google Scholar
14. Lv, Y.-H., X. Ding, and B.-Z. Wang, "Dual-wideband high-gain Fabry-Perot cavity antenna," IEEE Access, Vol. 8, 4754-4760, 2020.
doi:10.1109/ACCESS.2019.2962078 Google Scholar
15. Wang, N., L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with electrically thin dielectric superstrates," IEEE Access, Vol. 6, 14966-14973, 2018.
doi:10.1109/ACCESS.2018.2810085 Google Scholar
16. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetic Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103 Google Scholar
17. Xie, P. and G.-M. Wang, "Design of a frequency reconfigurable Fabry-Perot cavity antenna with single layer partially reflecting surface," Progress In Electromagnetic Research Letters, Vol. 70, 115-121, 2017.
doi:10.2528/PIERL17072505 Google Scholar
18. Yadav, V., S. Bhujade, and R. K. Gupta, "Efficient high gain circularly polarized microstrip antenna using asymmetrical RIS surface," 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 88-91, Bhubaneswar, 2015.
doi:10.1109/ICMOCE.2015.7489697 Google Scholar