Vol. 96
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-18
CRLH LWA Using Mushroom-Like Structures for Improved Radiation Performances
By
Progress In Electromagnetics Research Letters, Vol. 96, 129-136, 2021
Abstract
A composite right/left-handed (CRLH) leaky wave antenna (LWA) using double mushroom-like structures is proposed. With a proper arrangement of the left-handed structures, desirable cross-polarization performance in two orthogonal planes can be obtained based on the differential excitation principle. The CRLH performance of the cascaded LWA is demonstrated, and its improved radiation performance is clarified. Measured results indicate that the proposed antenna operates in 9.7-16.4 GHz with a beam scanning range from -71° to +31°. The cross-polarization levels are less than -30 dB and -20 dB in the beam scanning plane and non-beam-scanning plane, respectively.
Citation
Huan Zhang, "CRLH LWA Using Mushroom-Like Structures for Improved Radiation Performances," Progress In Electromagnetics Research Letters, Vol. 96, 129-136, 2021.
doi:10.2528/PIERL20123005
References

1. Singh, M. and B. Ghosh, "Periodic strip loaded reconfigurable half-mode substratge integrated waveguide-based leaky wave antennas," Electron. Lett., Vol. 56, No. 13, 646-648, 2020.
doi:10.1049/el.2020.0792

2. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 767-775, March 2011.
doi:10.1109/TAP.2010.2103025

3. Karmokar, D. K., Y. J. Guo, et al. "Composite right/left-handed leaky-wave antennas for wideangle beam scanning with flexibly chosen frequency range," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 100-110, January 2020.
doi:10.1109/TAP.2019.2946750

4. Sarkar, A., A. Sharma, et al. "Compact CRLH leaky wave antenna using TE20-mode substrate integrated waveguide for broad space radiation coverage," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7202-7207, October 2020.
doi:10.1109/TAP.2020.2979229

5. Jin, C. and A. Alphones, "Leaky-wave radiation behavior from a double periodic composite right/left-handed substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1727-1735, April 2012.

6. Cao, W., Z. N. Chen, and W. Hong, "A beam scanning leaky-wave slot antenna with enhanced scanning angle range and flat gain characteristic using composite phase-shifting transmission line," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5871-5875, November 2014.
doi:10.1109/TAP.2014.2350512

7. Nasimuddin, N., Z. N. Chen, and W. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3451-3457, June 2013.
doi:10.1109/TAP.2013.2256094

8. Saghati, A. P., M. M. Mirsalehi, and M. H. Neshatid, "A HMSIW circularly polarized leaky-wave antenna with backward, broadside, and forward radiation," IEEE Antennas Wireless Propag. Lett., Vol. 13, 2320-2325, 2014.

9. Zhang, H., Y. C. Jiao, and G. Zhao, "CRLH-SIW-based leaky wave antenna with low crosspolarisation for Ku-band applications," Electron. Lett., Vol. 52, No. 17, 1426-1428, 2016.
doi:10.1049/el.2016.1825

10. Caloz, T. I., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, Hoboken, 2004.

11. Left-handed Metamaterial Design Guide, Ansoft Corporation, 2007.

12. Schejbal, V. and V. Kovarik, "A method of cross-polarization reduction," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 108-111, 2006.
doi:10.1109/MAP.2006.277163

13. Dong, Y. and T. Itoh, "Substrate integrated composite right-/left-handed leaky-wave structure for polarization-flexible antenna application," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 760-771, February 2012.
doi:10.1109/TAP.2011.2173124